Featured Research

from universities, journals, and other organizations

New Molecules Could Change The Face Of Explosives Detection

Date:
May 14, 2008
Source:
University of Massachusetts Amherst
Summary:
Chemists have developed complex molecules for use in portable sensors that quickly and reliably detect the presence of plastic explosives, a pressing need for soldiers in Iraq. The molecules can also identify which type of explosive is present, allowing security personnel to quickly determine which material they are dealing with.

Researchers at the University of Massachusetts Amherst have created complex molecules containing zinc for use in portable sensors that quickly and reliably detect the presence of plastic explosives, a pressing need for soldiers in Iraq and other hostile environments.

Related Articles


Sensors containing the zinc complexes are also the first devices that allow the user to identify which type of explosive is present, since each metal complex has a unique response to explosives and explosive mimics.

“This is a big improvement over existing sensors based on polymers, since the metal complexes can discriminate between closely related explosives compounds,” says Michael Knapp, a professor of chemistry. “This ability is a real advantage for airport security personnel and law enforcement officials, who need to quickly detect and identify what type of explosives they are dealing with.”

Results of the study by Knapp, doctoral candidate Meaghan Germain and undergraduate student Thomas Vargo were published April 23 in the Journal of the American Chemical Society.

Knapp and Germain currently hold a patent for the zinc complexes, and are working with the UMass Amherst Office of Commercial Ventures and Intellectual Property to bring this technology to market. The research was supported by start-up funds provided by the University of Massachusetts Amherst.

The zinc complexes are naturally fluorescent, but they lose this ability when exposed to chemicals contained in plastic explosives, a phenomenon called quenching. Since each of the complexes react by losing different amounts of their fluorescent ability, they can be used to create sensor arrays that produce a different visual display when exposed to different explosives.

During testing, the sensors also responded quickly, since the zinc complexes are very efficient at changing energy states, making them suitable for hostile environments. “Of all the molecules that fluoresce, these go from a high energy state to a low energy state like falling off a cliff,” says Knapp. “They don’t lose energy gradually like metal complexes made with copper.”

“Identifying and distinguishing related compounds by optical methods is an enormous challenge for chemical sensing,” says Knapp. “The differential quenching of the zinc complexes is what permits discrimination within the closely related nitroaromatic family used in explosives.”


Story Source:

The above story is based on materials provided by University of Massachusetts Amherst. Note: Materials may be edited for content and length.


Cite This Page:

University of Massachusetts Amherst. "New Molecules Could Change The Face Of Explosives Detection." ScienceDaily. ScienceDaily, 14 May 2008. <www.sciencedaily.com/releases/2008/05/080513191831.htm>.
University of Massachusetts Amherst. (2008, May 14). New Molecules Could Change The Face Of Explosives Detection. ScienceDaily. Retrieved January 24, 2015 from www.sciencedaily.com/releases/2008/05/080513191831.htm
University of Massachusetts Amherst. "New Molecules Could Change The Face Of Explosives Detection." ScienceDaily. www.sciencedaily.com/releases/2008/05/080513191831.htm (accessed January 24, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, January 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins