Featured Research

from universities, journals, and other organizations

Self-Sustaining Solitary Light Wave Packets Could Inspire New Generation Of Computer Networks

Date:
May 15, 2008
Source:
ICT Results
Summary:
European researchers say their study of self-sustaining solitary light wave packets could result in a new generation of computers and optical telecommunications networks. Using light rather than electronic or magnetic devices to store and move data is quicker, more energy efficient and cost-effective, and cavity solitons could be the key to unlocking this technology.

European researchers say their study of self-sustaining solitary light wave packets could result in a new generation of computers and optical telecommunications networks.

Using light rather than electronic or magnetic devices to store and move data is quicker, more energy efficient and cost-effective, and cavity solitons could be the key to unlocking this technology.

A soliton is defined as a wave, which once formed, maintains its shape while it travels at constant speed. Soliton waves are localised within a region and are able to react with other solitons and emerge unchanged. This is in contrast to normal waves that diffuse over time over ever larger regions of space, a phenomenon called dispersion.

Solitons were first documented in 1834 by John Scott Russell who, quite by chance, observed the phenomenon in a canal in Scotland where soliton waves formed in water. He was able to reproduce this phenomenon in a water tank.

It was not until the 1970s that scientists suggested optical solitons could exist in optical fibres. In the late 1980s French and Belgian scientists were able to transmit soliton pulses over a fibre-optic cable.

Since then there has been an increasing amount of research into solitons and their practical applications for the rapid transmission of data over long distances.

The EU-funded FUNFACS project was set up in 2005 to investigate a special type of soliton. Cavity solitons are solitary waves formed in an optical cavity capable of trapping light. FUNFACS follows on from an earlier EU funded project PIANOS, which demonstrated steady cavity solitons.

The scientists wanted to investigate fundamental properties of such optical solitons, and demonstrate a proof of principle for all-optical processing with solitons.

Prospect of exciting applications

The scientists believed there were properties unique to cavity solitons that could give rise to applications more advanced than what is possible using today’s technology. For instance, such solitons have the extraordinary property that they can be formed and destroyed – 'written and erased' – at the micrometer scale in such a cavity. The project has gone a long way toward advancing that theory.

The properties of cavity solitons are particularly applicable to the developing scientific fields of photonics and optoelectronics, which aim to use light as a method of storing, manipulating and transmitting data. The science could ultimately result in a new generation of computers and optical networks.

Optoelectronics employs the electrical effects of materials on light. The FUNFACS researchers first sought to demonstrate the viability of self-sustained cavity soliton lasers (CSL), both as continuous waves and as pulsed waves that can be switched on and off.

They worked from the premise that since a soliton in an optical fibre is self-sustaining once it has been created, a cavity soliton is similarly self-sustaining within its cavity after its creation.

Lasers (light amplification by stimulated emission of radiation) consist of a gain medium inside a highly reflective optical cavity. The gain medium, which can be solid, liquid or gas, is the major determining factor of the wavelength of operation, and other properties, of the laser.

The cavity is coupled to an energy supply directed to the gain medium. In the case of a CSL the gain medium is the semiconducting material.

The test CSL was based on an existing semiconductor laser type known as a vertical-cavity surface-emitting laser (VCSEL) which is used in a variety of applications, including those relating to optical telecommunications.

The device consists of a thin optical cavity sandwiched between two highly reflective mirrors, fabricated out of solid semiconducting material using state-of-the-art nanotechnology.

An all-optical future

The researchers were able to show that due to the self-sustaining properties of cavity solitons the energy input required to maintain them is small. They were also able to show CSLs can be switched on and off using light pulses.

The research results indicate that CSLs could play an important role in an all-optical telecommunications system, according to project coordinator Robert Kuszelewicz.

“In conventional systems data are switched and routed within the network by converting light pulses into electrical signals and back again which slows down communications and creates a lot of waste heat,” he says. “But by using CSLs the switching can be done just with the light pulses with no need to convert to and from electricity thus giving much greater transmission speed and efficiency.”

Other tests demonstrated that solitons are not restricted to a single location but could be moved across the plane of the semiconductor material with a controlled speed and direction of drift.

Multiple solitons can also co-exist in close proximity to each other without interacting. Brought closer still, they can bind to one another forming a sort of cavity soliton molecule. Finally, the tests demonstrated that an attempt to superimpose two of them results in one disappearing.

“This wealth of properties is an incomparable reservoir of new processing functions unavailable in more conventional electronic systems,” says Kuszelewicz.

The discoveries could lead to an evolution from the current use of chip-based semiconductors for data processing to a more flexible type of optical processing. The advantages of optical processing stem from the way data is stored.

Once data has been imprinted on a semiconductor chip, its location is permanently fixed, while data held using cavity soliton technology can be moved without changing or losing its character.

The advance could represent a major technological breakthrough, much in the same way as transistors replaced valves and were themselves replaced by microchips.

However Kuszelewicz believes such a breakthrough is still a long way in the future. The first practical applications could be in hybrid semiconductors using current technology coupled with optoelectronic technology based on cavity solitons.

He also points out the two technologies each have their own strengths and drawbacks and will continue to exist alongside each other for a long time to come.

The FUNFACS project received funding from the EU's Sixth Framework Programme for research.


Story Source:

The above story is based on materials provided by ICT Results. Note: Materials may be edited for content and length.


Cite This Page:

ICT Results. "Self-Sustaining Solitary Light Wave Packets Could Inspire New Generation Of Computer Networks." ScienceDaily. ScienceDaily, 15 May 2008. <www.sciencedaily.com/releases/2008/05/080514083819.htm>.
ICT Results. (2008, May 15). Self-Sustaining Solitary Light Wave Packets Could Inspire New Generation Of Computer Networks. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2008/05/080514083819.htm
ICT Results. "Self-Sustaining Solitary Light Wave Packets Could Inspire New Generation Of Computer Networks." ScienceDaily. www.sciencedaily.com/releases/2008/05/080514083819.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins