Featured Research

from universities, journals, and other organizations

Can One 'Pin Down' Electrons?

Date:
May 19, 2008
Source:
Goethe University Frankfurt
Summary:
Experiments by physicists end a long-lasting dispute with an answer that apparently satisfies everyone. When atoms form molecules, they share their outer electrons and this creates a negatively charged cloud. Here, electrons buzz around between the two positively charged nuclei, making it impossible to tell which nucleus they belong to. They are delocalized. But is this also true for the electrons located closer to the nucleus?

What was the initial location of the electron before it was ejected from the dumbbell-shaped nitrogen molecule by a high-energy photon (blue)? The diagram shows the probability distribution of the photo-electron in the case of its prior localization (left), or for the Auger electron (right). As both electrons form an entangled state, the Auger electron is also localized.
Credit: Markus Schoeffler

When atoms form molecules, they share their outer electrons and this creates a negatively charged cloud. Here, electrons buzz around between the two positively charged nuclei, making it impossible to tell which nucleus they belong to. They are delocalized.

But is this also true for the electrons located closer to the nucleus? And are those electrons spread out too, or do they belong to just one nucleus, i.e. are they localized? These questions, that scientists have hotly disputed over the last 50 years, have now been answered by an international team of scientists, led by Frankfurt University's atomic physics group. Their discoveries are reconciliatory. As is so often the case in quantum theory, there is no single 'right' answer -- one solution is just as valid as the other.

In order to answer these questions, the scientists first removed the innermost electron located close to the nucleus from nitrogen molecules (N2), using high-energy light from a synchrotron radiation source at the Advanced Light Source at the Lawrence Berkeley National Laboratory, Berkeley, California. It is reasonable to assume that these photo-electrons belong to one nucleus and can thus be located. They leave behind a vacancy in the inner core shell, which is then filled by an outer electron.

Additionally a second electron (an Auger electron) is ejected from the molecule. This Auger electron acts as a probe that can determine exactly where the original hole was created. Both electrons, the photo-electron and the Auger electron, form an entangled state, which means that as soon as one is measured, the properties of the second are determined as well. This prediction of quantum theory - which was rejected by Einstein as a "spooky long-range interaction" - has since been found to be valid for twin photons. It is the basic scheme behind quantum cryptography as well as "Quantum teleportation".

Professor Reinhardt Dφrner's group is the first to prove the existence of such entangled states for electrons, using the COLTRIMS technology, which has been developed in Frankfurt over the last decade. With this experimental set-up, they are able to reveal the pathways of the two electrons created. In the current issue of the journal Science, the physicists claim that the question of whether an electron is localized or not can only be answered for the complete system.

If the innermost electron is localized, the second electron can be assigned to either of the two nuclei. But sometimes it proves impossible to determine whether the first electron originates from the left or the right 'atom of the first electron. In this case the second electron is also delocalized.

With these experimental details, it is now possible to explain the observations of the last 50 years in a unified model. Both groups - those supporting the localized theory and those endorsing a delocalized picture - are thus reconciled. Dr. Markus Schφffler, who is responsible for the measurement, sees further exciting perspectives opening up and he plans to continue his work on this topic in Berkeley, funded by a scholarship from the Alexander von Humboldt Foundation.


Story Source:

The above story is based on materials provided by Goethe University Frankfurt. Note: Materials may be edited for content and length.


Cite This Page:

Goethe University Frankfurt. "Can One 'Pin Down' Electrons?." ScienceDaily. ScienceDaily, 19 May 2008. <www.sciencedaily.com/releases/2008/05/080515145358.htm>.
Goethe University Frankfurt. (2008, May 19). Can One 'Pin Down' Electrons?. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2008/05/080515145358.htm
Goethe University Frankfurt. "Can One 'Pin Down' Electrons?." ScienceDaily. www.sciencedaily.com/releases/2008/05/080515145358.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins