Featured Research

from universities, journals, and other organizations

How Small Molecule Can Take Apart Alzheimer's Disease Protein Fibers

Date:
May 20, 2008
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers have shown, in unprecedented detail, how a small molecule is able to selectively take apart abnormally folded protein fibers connected to Alzheimer's disease and prion diseases. Finding a way to dismantle misfolded proteins has implications for new treatments for a host of neurodegenerative diseases.

Alzheimer's fibers without DAPH (left). Note uniform fibers. Alzheimer's proteins with DAPH (right). Note fibers have broken up.
Credit: James Shorter, PhD, University of Pennsylvania School of Medicine

Researchers from the University of Pennsylvania School of Medicine have shown, in unprecedented detail, how a small molecule is able to selectively take apart abnormally folded protein fibers connected to Alzheimer's disease and prion diseases. The findings appear online in the Proceedings of the National Academy of Sciences. Finding a way to dismantle misfolded proteins has implications for new treatments for a host of neurodegenerative diseases.

Abnormal accumulation of amyloid fibers and other misfolded forms in the brain cause neurodegenerative diseases. Similarly, build-up of abnormally folded prion proteins between neurons causes the human version of mad cow disease, Creutzfeldt-Jakob disease.

"Surprisingly, a small molecule called DAPH selectively targets the areas that hold fibers together, and converts fibers to a form that is unable to grow. Normally fibers grow from their ends, but the drug stops this activity," says senior author James Shorter, PhD, Assistant Professor of Biochemistry and Biophysics. "Our data suggest that it is possible to generate effective small molecules that can attack amyloid fibers, which are associated with so many devastating diseases."

The researchers are now working on how DAPH acts as a wedge to stop the fibers from growing. "Presumably DAPH fits very neatly into the crevices between fiber subunits," explains Shorter. "When we grow yeast cells with the prion in the presence of DAPH, they begin to lose the prion. We also saw this in the test tube using pure fibers. The small molecule directly remodels fiber architecture. We've really been able to get at the mechanism by which DAPH, or any small molecule, works for the first time." DAPH was originally found in a screen of small molecules that reduce amyloid-beta toxicity in the lab of co-author Vernon Ingram, Shorter's collaborator at the Massachusetts Institute of Technology (MIT).

In a test tube, if a small amount of amyloid or prion fiber is added to the normal form of the protein, it converts it to the fiber form. But when DPAH is added to the mix, the yeast prion protein does not aggregate into fibers. "It's essentially stopping fiber formation in its tracks," says Huan Wang, first author and research specialist in Shorter's lab. "We were surprised to see two very different proteins, amyloid-beta and Sup35, sensitive to this same small molecule."

The next step is to identify more potent DAPH variants with greater selectivity for deleterious amyloids. Since some amyloids may turn out to be beneficial -- for example, one form may be involved in long-term memory formation -- it will be necessary to find a drug that does not hit all amyloids indiscriminately. "We'd need one that hits only problem amyloids, and DAPH gives us a hint that such selectivity is possible" says Shorter.

This work was initiated in Susan Lindquist's lab at MIT and completed at Penn. The study was funded by the National Institute of General Medical Sciences, the Alzheimer's Association, the Kurt and Johanna Immerwahr Fund for Alzheimer Research, a DuPont-MIT alliance, the American Heart Association, and pilot grants from the University of Pennsylvania Alzheimer's Disease Core Center and Institute on Aging.

.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "How Small Molecule Can Take Apart Alzheimer's Disease Protein Fibers." ScienceDaily. ScienceDaily, 20 May 2008. <www.sciencedaily.com/releases/2008/05/080516094455.htm>.
University of Pennsylvania School of Medicine. (2008, May 20). How Small Molecule Can Take Apart Alzheimer's Disease Protein Fibers. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2008/05/080516094455.htm
University of Pennsylvania School of Medicine. "How Small Molecule Can Take Apart Alzheimer's Disease Protein Fibers." ScienceDaily. www.sciencedaily.com/releases/2008/05/080516094455.htm (accessed August 23, 2014).

Share This




More Mind & Brain News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins