Featured Research

from universities, journals, and other organizations

Disorder Enables Extreme Sensitivity In Piezoelectric Materials

Date:
May 19, 2008
Source:
National Institute of Standards and Technology
Summary:
A research team has found an explanation for the extreme sensitivity to mechanical pressure or voltage of a special class of solid materials called relaxors. The ability to control and tailor this sensitivity would allow industry to enhance a range of devices used in medical ultrasound imaging, loudspeakers, sonar and computer hard drives.

A research team working at the National Institute of Standards and Technology (NIST) has found an explanation for the extreme sensitivity to mechanical pressure or voltage of a special class of solid materials called relaxors.* The ability to control and tailor this sensitivity would allow industry to enhance a range of devices used in medical ultrasound imaging, loudspeakers, sonar and computer hard drives.

Related Articles


Relaxors are piezoelectrics--they change shape when a battery is connected across opposite ends of the material, or they produce a voltage when squeezed. "Relaxors are roughly 10 times more sensitive than any other known piezoelectric," explains NIST researcher Peter Gehring. They are extremely useful for device applications because they can convert between electrical and mechanical forms of energy with little energy loss.

A team of scientists from Brookhaven National Laboratory, Stony Brook University, Johns Hopkins University and NIST used the neutron scattering facilities at the NIST Center for Neutron Research (NCNR) to study how the atomic "acoustic vibrations," which are essentially sound waves, inside relaxors respond to an applied voltage. They found that an intrinsic disorder in the chemical structure of the relaxor crystal apparently is responsible for its special properties.

Atoms in solids are usually arranged in a perfect crystal lattice, and they vibrate about these positions and propagate energy in the form of sound waves. In typical piezoelectric materials, these acoustic vibrations persist for a long time much like the ripples in a pond of water long after a pebble has been thrown in.

Not so with relaxors: these vibrations quickly die out. The research team led by Brookhaven's Guangyong Xu, compared how the sound waves propagated in different directions, and observed a large asymmetry in the response of the relaxor lattice when subjected to an applied voltage.

"We learned that the lattice's intrinsic chemical disorder affects the basic behavior and organization of the materials," says Gehring. The disorder that breaks up the acoustic vibrations makes the material structurally unstable and very sensitive to applied pressure or an applied voltage.

That disorder occurs because the well-defined lattice of atoms alternates randomly between one of three of its elements--zinc, niobium and titanium--each of which carries a different electrical charge.

The research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science and the Natural Science and Research Council of Canada.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Xu, J. Wen, C. Stock and P.M. Gehring. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nature Materials. Published online May 11, 2008. http://dx.doi.org/10.1038/nmat2196 [link]

Cite This Page:

National Institute of Standards and Technology. "Disorder Enables Extreme Sensitivity In Piezoelectric Materials." ScienceDaily. ScienceDaily, 19 May 2008. <www.sciencedaily.com/releases/2008/05/080516164814.htm>.
National Institute of Standards and Technology. (2008, May 19). Disorder Enables Extreme Sensitivity In Piezoelectric Materials. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2008/05/080516164814.htm
National Institute of Standards and Technology. "Disorder Enables Extreme Sensitivity In Piezoelectric Materials." ScienceDaily. www.sciencedaily.com/releases/2008/05/080516164814.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins