Featured Research

from universities, journals, and other organizations

Self-repairing Aircraft Could Revolutionize Aviation Safety

Date:
May 19, 2008
Source:
Engineering and Physical Sciences Research Council
Summary:
A new technique that mimics healing processes found in nature could enable damaged aircraft to mend themselves automatically, even during a flight. As well as the obvious safety benefits, this breakthrough could make it possible to design lighter airplanes in future. This would lead to fuel savings, cutting costs for airlines and passengers and reducing carbon emissions too.

Flying colours: fractured fibre-reinforced polymer under UV illumination showing how the 'healing agent' bleeds into the damage.
Credit: Image courtesy of Engineering and Physical Sciences Research Council

A new technique that mimics healing processes found in nature could enable damaged aircraft to mend themselves automatically, even during a flight.

As well as the obvious safety benefits, this breakthrough could make it possible to design lighter aeroplanes in future. This would lead to fuel savings, cutting costs for airlines and passengers and reducing carbon emissions too.

The technique works like this. If a tiny hole/crack appears in the aircraft (e.g. due to wear and tear, fatigue, a stone striking the plane etc), epoxy resin would 'bleed' from embedded vessels near the hole/crack and quickly seal it up, restoring structural integrity. By mixing dye into the resin, any 'self-mends' could be made to show as coloured patches that could easily be pinpointed during subsequent ground inspections, and a full repair carried out if necessary.

This simple but ingenious technique, similar to the bruising and bleeding/healing processes we see after we cut ourselves, has been developed by aerospace engineers at Bristol University, with funding from the Engineering and Physical Sciences Research Council (EPSRC). It has potential to be applied wherever fibre-reinforced polymer (FRP) composites are used. These lightweight, high-performance materials are proving increasingly popular not only in aircraft but also in car, wind turbine and even spacecraft manufacture. The new self-repair system could therefore have an impact in all these fields.

The technique's innovative aspect involves filling the hollow glass fibres contained in FRP composites with resin and hardener. If the fibres break, the resin and hardener ooze out, enabling the composite to recover up to 80-90% of its original strength -- comfortably allowing a plane to function at its normal operational load.

"This approach can deal with small-scale damage that's not obvious to the naked eye but which might lead to serious failures in structural integrity if it escapes attention," says Dr Ian Bond, who has led the project. "It's intended to complement rather than replace conventional inspection and maintenance routines, which can readily pick up larger-scale damage, caused by a bird strike, for example."

By further improving the already excellent safety characteristics of FRP composites, the self-healing system could encourage even more rapid uptake of these materials in the aerospace sector. A key benefit would be that aircraft designs including more FRP composites would be significantly lighter than the primarily aluminium-based models currently in service. Even a small reduction in weight equates to substantial fuel savings over an aircraft's lifetime.

"This project represents just the first step", says Ian Bond. "We're also developing systems where the healing agent isn't contained in individual glass fibres but actually moves around as part of a fully integrated vascular network, just like the circulatory systems found in animals and plants. Such a system could have its healing agent refilled or replaced and could repeatedly heal a structure throughout its lifetime. Furthermore, it offers potential for developing other biological-type functions in man-made structures, such as controlling temperature or distributing energy sources."

The new self-repair technique developed by the current EPSRC-funded project could be available for commercial use within around four years.

The 3-year research project 'Bleeding Composites: Damage Detection and Repair Using a Biomimetic Approach' concluded at the end of April 2008. It has received total EPSRC funding of just under 171,000.

The team is working with industrial partner Hexcel Composites Ltd, a manufacturer of composites for aerospace and other industrial applications.

In aircraft, FRP composites can be used in any part of the primary structure (fuselage, nose, wings, tailfin).

The resin used in the self-repair system is an off-the-shelf, Araldite-like substance. The team are currently developing a custom-made resin optimised for use in the system.

The dye mixed with the resin would be ultra-violet fluorescent and so would not show up in normal lighting conditions.

A similar technique developed at the University of Illinois involves the addition of microcapsules containing dicyclopentadiene, rather than epoxy resin contained in the glass fibres themselves. Such a system sees the rapid reaction of a liquid with a solid catalyst. The resulting plastic gives similar properties to the epoxy. However, the catalyst is based on ruthenium, an expensive and rare metal. The even distribution of capsules and catalyst within an FRP has also proven to be difficult.


Story Source:

The above story is based on materials provided by Engineering and Physical Sciences Research Council. Note: Materials may be edited for content and length.


Cite This Page:

Engineering and Physical Sciences Research Council. "Self-repairing Aircraft Could Revolutionize Aviation Safety." ScienceDaily. ScienceDaily, 19 May 2008. <www.sciencedaily.com/releases/2008/05/080519105052.htm>.
Engineering and Physical Sciences Research Council. (2008, May 19). Self-repairing Aircraft Could Revolutionize Aviation Safety. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2008/05/080519105052.htm
Engineering and Physical Sciences Research Council. "Self-repairing Aircraft Could Revolutionize Aviation Safety." ScienceDaily. www.sciencedaily.com/releases/2008/05/080519105052.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins