Featured Research

from universities, journals, and other organizations

New Design Enables More Cost-effective Quantum Key Distribution

Date:
May 30, 2008
Source:
National Institute of Standards and Technology
Summary:
Researchers have demonstrated a simpler and potentially lower-cost method for distributing cryptographic keys using quantum cryptography, the most secure method of transmitting data. The new method minimizes the required number of detectors, by far the most costly components in quantum cryptography.

A highly simplified schematic of a recipient's detectors in a quantum cryptography setup. Conventional cryptography setups (left) require at least two detectors, and the most common setup, known as BB84, requires four. By adding an optical component that delays the travel of photons to the detector, the number of required detectors is cut in half
Credit: NIST

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a simpler and potentially lower-cost method for distributing strings of digits, or "keys," for use in quantum cryptography, the most secure method of transmitting data. The new "quantum key distribution" (QKD) method, outlined in an upcoming paper, minimizes the required number of detectors, by far the most costly components in quantum cryptography.

Although this minimum-detector arrangement cuts transmission rates by half, the NIST system still works at broadband speeds, allowing, for example, real-time quantum encryption and decryption of webcam-quality video streams over an experimental quantum network.

In quantum cryptography, a recipient (named Bob) needs to measure a sequence of photons, or particles of light that are transmitted by a sender (named Alice). These photons have information encoded in their polarization, or direction of their electric field. In the most common polarization-based protocol, known as BB84, Bob uses four single-photon detectors, costing approximately $5,000-$20,000 each. One pair of detectors records photons with horizontal and vertical polarization, which could indicate 0 and 1 respectively. The other pair detects photons with "diagonal", or +/- 45 degree, polarization in which the "northeast" and "northwest" directions alternatively denote 0 and 1.

In the new method, the researchers, led by NIST's Xiao Tang, designed an optical component to make the diagonally polarized photons rotate by a further 45 degrees and arrive at the same detector but later, and into a separate "time bin", than the horizontal/vertical polarized ones. Therefore, one pair of detectors can be used to record information from both kinds of polarized photons in succession, reducing the required number of detectors from four to two.

In another protocol, called B92, the researchers reduced the required number of detectors from two to one. And in work performed since their new paper, the researchers further developed their approach so that the popular BB84 method now only requires one detector instead of four.

Although in theory quantum cryptography can transmit absolutely secure keys guaranteed by fundamental physical principles (measuring them will disturb their values and make an eavesdropper instantly known), the imperfect properties of photon detectors may undermine system security in practice. For example, photon detectors have an intrinsic problem known as "dead time," in which a detector is out of commission for a short time after it records a photon, causing it to miss the bit of data that immediately follows; this could result in non-random (and therefore more predictable) bit patterns in which 0s alternate with 1s. Furthermore, inevitable performance differences between detector pairs can also cause them to record less random sequences of digits. The new design avoids these issues and maintains the security of quantum-key-distribution systems in practical applications.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Ma, T. Chang, A. Mink, O. Slattery, B. Hershman and X. Tang. Experimental demonstration of a detection-time-bin-shift polarization encoding quantum key distribution system. IEEE Communications Letters, Vol. 12, No. 6, June 2008

Cite This Page:

National Institute of Standards and Technology. "New Design Enables More Cost-effective Quantum Key Distribution." ScienceDaily. ScienceDaily, 30 May 2008. <www.sciencedaily.com/releases/2008/05/080529124827.htm>.
National Institute of Standards and Technology. (2008, May 30). New Design Enables More Cost-effective Quantum Key Distribution. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/05/080529124827.htm
National Institute of Standards and Technology. "New Design Enables More Cost-effective Quantum Key Distribution." ScienceDaily. www.sciencedaily.com/releases/2008/05/080529124827.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins