Featured Research

from universities, journals, and other organizations

How Enzyme Works: A Molecular Switch Turns On The Flame In 'Nature's Blowtorch'

Date:
June 2, 2008
Source:
Brandeis University
Summary:
Uncontrolled reaction of organic compounds with oxygen is easy: we call it fire. But nature often needs to do oxidations very specifically, adding oxygen to a particular carbon atom in a complicated molecule without disturbing anything else. Usually, this job falls to an enzyme called cytochrome P450.

Uncontrolled reaction of organic compounds with oxygen is easy: we call it fire. But nature often needs to do oxidations very specifically, adding oxygen to a particular carbon atom in a complicated molecule without disturbing anything else. Usually, this job falls to an enzyme called cytochrome P450. Because cytochrome P450 can catalyze molecular oxidations with pinpoint accuracy, it has been called "nature's blowtorch," and its job is analogous to that of a welder doing a tricky repair in a highly flammable wooden house. It needs to do the repair without burning itself or the house.

Brandeis University researchers have been trying to understand the details of how P450 does this job so efficiently; that is, "burning" the right places in the target molecule (substrate) while not "burning down the house."

In new research online in the Cell Press journal Structure, chemistry graduate student Bo OuYang, along with fellow grad student Marina Dang and advisors Thomas and Susan Pochapsky, describe a new insight into how P450 works. The researchers discovered that the protein chain in P450 can change its structure by a 180 degree rotation around a single peptide bond. In one orientation, both oxygen and the molecule to be oxidized (substrate) can get in and out of the P450 active site, but the oxygen is not "activated," that is, it is not in a state to react with the substrate (or anything else, for that matter).

In the other orientation, however, the substrate is held tightly in the correct orientation for the oxidation, and the oxygen can be activated to do "the burn." The activated form of the molecule is generated by binding a helper protein, called Pdx, to the P450. This binding drives the reorientation around the peptide bond, and moves the P450 from the form in which substrate binds to the active form. After the reaction is finished, the Pdx falls off, the P450 moves back to the unactivated state, and the oxidized products are free to leave.

After another substrate molecule and oxygen move into the active site, the cycle can repeat. The reorientation of a single peptide bond, an event called an "isomerization," thus acts as a molecular switch, moving the P450 between safe and active forms while protecting the P450 and its environment from accidental oxidative damage.

Much of the experimental work for this discovery was done using the NIH-funded 800 MHz NMR spectrometer housed in the Landsman Research Facility at Brandeis University.


Story Source:

The above story is based on materials provided by Brandeis University. Note: Materials may be edited for content and length.


Cite This Page:

Brandeis University. "How Enzyme Works: A Molecular Switch Turns On The Flame In 'Nature's Blowtorch'." ScienceDaily. ScienceDaily, 2 June 2008. <www.sciencedaily.com/releases/2008/05/080529170518.htm>.
Brandeis University. (2008, June 2). How Enzyme Works: A Molecular Switch Turns On The Flame In 'Nature's Blowtorch'. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/05/080529170518.htm
Brandeis University. "How Enzyme Works: A Molecular Switch Turns On The Flame In 'Nature's Blowtorch'." ScienceDaily. www.sciencedaily.com/releases/2008/05/080529170518.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins