Featured Research

from universities, journals, and other organizations

How Plasma From Superstorms Affects Near-Earth Space

Date:
May 31, 2008
Source:
NASA/Goddard Space Flight Center
Summary:
NASA scientists have uncovered new details about how plasma from superstorms interact with Earth's magnetosphere.

This computer-generated image shows a view of Earth's inner magnetosphere during a superstorm. Credit:
Credit: NASA/Mei-Ching Fok and Thomas E. Moore

NASA scientists have uncovered new details about how plasma from superstorms interact with Earth’s magnetosphere.

“The surprising result of this model is that the magnetosphere’s main phase pressure is dominated by energetic protons from the plasmasphere, rather than from the solar wind,” says Mei-Ching Fok, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md. Fok and her team will present their findings on May 29 at the American Geophysical Union conference in Ft. Lauderdale, Fl.

Violent activity on the sun, such as a solar flare, can produce a monster superstorm that releases plasma into the solar wind. Large flares often result in an ejection of material from the solar corona, called a coronal mass ejection (CME). A CME can spew billions of tons of plasma away from the sun and toward Earth at speeds faster than 1.5 million mph. The plasma affects Earth and the vicinity surrounding Earth dominated by its magnetic field, called the magnetosphere.

As plasma from a superstorm interacts with Earth’s magnetosphere, it can trigger spectacular displays of the Northern Lights, called auroras, interfere with communications between satellites and airplanes traveling near the North Pole, and interrupt global positioning systems and our power grid.

Fok and her team used their global ion kinetic model to evaluate contributions to magnetospheric pressure from the solar wind, polar wind, auroral wind, and plasmaspheric wind. Their model, which simulates sources of superstorm plasmas, found that energetic protons from the plasmasphere dominate the magnetosphere’s main phase pressure. Until now, scientists thought energetic protons from the solar wind most affected the magnetosphere.

The inner region of Earth’s magnetosphere contains a low-density mixture of hot and cold plasmas, which include the ring current, the plasmasphere, and the radiation belt.

The plasmasphere is a donut-shaped region of the inner magnetosphere. During space storms, the plasmasphere is squashed and pressurized by the solar wind, forming a long tail called the plasmaspheric plume. The plume particles are picked up and further energized by the solar wind. When they re-enter the magnetosphere, they supply the majority of energetic protons that affect the magnetosphere’s main phase pressure during a superstorm event.

Simulating the sources of superstorm plasmas will help to better understand superstorms and pave the way to predicting their impact on Earth. The details uncovered in the team’s model provide a new piece of the Sun-Earth puzzle.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "How Plasma From Superstorms Affects Near-Earth Space." ScienceDaily. ScienceDaily, 31 May 2008. <www.sciencedaily.com/releases/2008/05/080530154103.htm>.
NASA/Goddard Space Flight Center. (2008, May 31). How Plasma From Superstorms Affects Near-Earth Space. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2008/05/080530154103.htm
NASA/Goddard Space Flight Center. "How Plasma From Superstorms Affects Near-Earth Space." ScienceDaily. www.sciencedaily.com/releases/2008/05/080530154103.htm (accessed April 20, 2014).

Share This



More Earth & Climate News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Ark. Man Finds 6-Carat Diamond At State Park

Ark. Man Finds 6-Carat Diamond At State Park

Newsy (Apr. 18, 2014) An Arkansas man has found a nearly 6.2-carat diamond, which he dubbed "The Limitless Diamond," at the Crater of Diamonds State Park. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins