Featured Research

from universities, journals, and other organizations

Physicists Model Single Molecular Switch, Computing's Elusive Holy Grail

Date:
June 17, 2008
Source:
Michigan Technological University
Summary:
Physicists have developed a model to explain the mechanism behind computing's elusive Holy Grail, the single molecular switch. If born out experimentally, his work could help explode Moore’s Law and could revolutionize computing technology.

Michigan Technological University physicist Ranjit Pati and his team have developed a model to explain the mechanism behind computing’s elusive Holy Grail, the single molecular switch.

If born out experimentally, his work could help explode Moore’s Law and could revolutionize computing technology.

Moore’s Law predicts that the number of transistors that can be economically placed on an integrated circuit will double about every two years. But by 2020, Moore’s Law is expected to hit a brick wall, as manufacturing costs rise and transistors shrink beyond the reach of the laws of classical physics.

A solution lies in the fabled molecular switch. If molecules could replace the current generation of transistors, you could fit more than a trillion switches onto a centimeter-square chip. In 1999, a team of researchers at Yale University published a description of the first such switch, but scientists have been unable to replicate their discovery or explain how it worked. Now, Pati believes he and his team may have found the mechanism behind the switch.

Applying quantum physics, he and his group developed a computer model of an organometallic molecule firmly bound between two gold electrodes. Then he turned on the juice.

As the laws of physics would suggest, the current increased along with the voltage, until it rose to a miniscule 142 microamps. Then suddenly, and counterintuitively, it dropped, a mysterious phenomenon known as negative differential resistance, or NDR. Pati was astonished at what his analysis of the NDR revealed.

Up until the 142-microamp tipping point, the molecule’s cloud of electrons had been whizzing about the nucleus in equilibrium, like planets orbiting the sun. But under the bombardment of the higher voltage, that steady state fell apart, and the electrons were forced into a different equilibrium, a process known as “quantum phase transition.”

“I never thought this would happen,” Pati said. “I was really excited to see this beautiful result.”

Why is this important? A molecule that can exhibit two different phases when subjected to electric fields has promise as a switch: one phase is the “zero” and the other the “one,” which form the foundation of digital electronics.

Pati is working with other scientists to test the model experimentally. His results appear in the article “Origin of Negative Differential Resistance in a Strongly Coupled Single Molecule-metal Junction Device,” published June 16 in Physical Review Letters. The other coauthors are Mike McClain, an undergraduate from Michigan Tech; and Anirban Bandyopadhyay, of the National Institute for Materials Science, Japan. The work of Pati’s team was financed by a five-year, $400,000 Faculty Early Career Development Program award he received from the National Science Foundation.


Story Source:

The above story is based on materials provided by Michigan Technological University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pati et al. Origin of Negative Differential Resistance in a Strongly Coupled Single Molecule-Metal Junction Device. Physical Review Letters, 2008; 100 (24): 246801 DOI: 10.1103/PhysRevLett.100.246801

Cite This Page:

Michigan Technological University. "Physicists Model Single Molecular Switch, Computing's Elusive Holy Grail." ScienceDaily. ScienceDaily, 17 June 2008. <www.sciencedaily.com/releases/2008/06/080616144859.htm>.
Michigan Technological University. (2008, June 17). Physicists Model Single Molecular Switch, Computing's Elusive Holy Grail. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2008/06/080616144859.htm
Michigan Technological University. "Physicists Model Single Molecular Switch, Computing's Elusive Holy Grail." ScienceDaily. www.sciencedaily.com/releases/2008/06/080616144859.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins