Featured Research

from universities, journals, and other organizations

Immune Molecule That Plays A Powerful Role In Avoiding Organ Rejection Identified

Date:
June 20, 2008
Source:
Medical College of Georgia
Summary:
When a mouse's immune system is deciding whether to reject a skin graft, one powerful member of a molecular family designed to provoke such a response can effectively reduce the visibility of the mouse's own cells and help the graft survive, researchers say.

When a mouse's immune system is deciding whether to reject a skin graft, one powerful member of a molecular family designed to provoke such a response can effectively reduce the visibility of the mouse's own cells and help the graft survive, researchers say.
Credit: Image courtesy of Medical College of Georgia

When a mouse's immune system is deciding whether to reject a skin graft, one powerful member of a molecular family designed to provoke such a response can effectively reduce the visibility of the mouse's own cells and help the graft survive, researchers say.

"This is a molecule with huge potential to regulate immune response," Dr. Anatolij Horuzsko, reproductive immunologist at the Medical College of Georgia Center for Molecular Chaperone/Radiobiology and Cancer Virology, says of HLA-G dimer.

Dimer appears to be the most powerful among several known forms of HLA-G at inhibiting the immune response, researchers have found. Fetuses use this natural mechanism to hide from the mother's immune system and it's at work in some transplant patients as well.

Now that the scientists know which HLA-G is best at down-regulating the immune response and how it works, they believe the molecule's action can be augmented in people with organ transplants and autoimmune disease and turned down to help fight a tumor. Measuring endogenous levels of HLA-G dimer may also help physicians identify which transplant patients require little, if any, immune suppression.

Research published online in Proceedings of the National Academy of Sciences details that when HLA-G dimer binds with its inhibitory receptor, ILT4, it triggers a signaling pathway in which immune molecules IL-6 and STAT3 play a major role. "Biologically this is an interaction that requires several important suppressive molecules," says Dr. Horuzsko, the study's corresponding author and a faculty member in the MCG Schools of Medicine and Graduate Studies.

They looked at the resulting strong signaling in culture, then measured its impact on skin graft survival in mice and found it prolonged survival. Now Dr. Horuzsko is working with Dr. Laura Mulloy, chief of the Section of Nephrology, Hypertension and Transplantation Medicine in the MCG School of Medicine, to see if this dimer form is at work in kidney transplant patients who avoid rejection.

HLA-G dimer's target is another MHC molecule, which is essentially an individual's unique tissue signature; HLA-G itself is a type of MHC. In fact, HLA - human leukocyte antigen - matching is done for organ and bone marrow transplants to try minimize the recipient's reaction to the new organ. Transplant patients also take drugs that broadly dampen the immune response but can leave them more vulnerable to infections and disease.

Dr. Horuzsko notes that HLA-G can work through other cells, not just MHC molecules, and that not every HLA-G form is good at down-regulating MHC.

He plans to look at HLA-G dimer levels in tumor patients as well. "Tumors already down- regulate MHC molecules," he says, referencing how tumors turn down their tissue expression so they can fly below the radar of the immune system. "We need to see what form of HLA-G cancers - including leukemia, lymphoma, melanoma and breast cancer - use and see their level of expression." He notes that HLA-G isn't the only mechanism cancers use to escape the immune response but that being able to control a tumor's use of this molecule could offer a new way to target tumors for natural destruction.

A recent grant from the National Multiple Sclerosis Society is enabling studies of whether down-regulating MHC expression in multiple sclerosis patients can slow or arrest the immune system's attack of the nerve's protective covering. "The expression of the MHC molecule for some reason goes up - an infection might trigger the recognition of your own tissue - and the immune system attacks," says Dr. Horuzsko. "We can generate a mouse with MS-like disease and target the HLA-G inhibitory receptor to see if it effectively down-regulates the disease." He'll look to see which, if any, of the HLA-G forms are most powerful in this autoimmune scenario.

Dr. Jean Dausset of the Foundation Jean Dausset Human Polymorphism Study Center, Paris, is co-corresponding author. Dr. Dausset received the 1980 Nobel Prize Winner in Medicine for his work in MHC. Co-authors include Dr. Siyuan Liang, MCG postdoctoral associate, and Dr. Vladimir Ristich, former MCG postdoctoral fellow; Dr. Hisashi Arase, Research Institute for Microbial Diseases, Osaka University, Japan; and Dr. Edgardo D. Carosella, Service de Recherche en Hιmato-Immunologie, Commisariat ΰ l'Energie Atomique, Institut Universitaire d'Hematologie, Hτpital Saint-Louis, Paris.

Dr. Horuzsko, a faculty member in the MCG Schools of Medicine and Graduate Studies, also has funding from the National Institutes of Health and Roche Organ Transplantation Research Foundation.

 


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "Immune Molecule That Plays A Powerful Role In Avoiding Organ Rejection Identified." ScienceDaily. ScienceDaily, 20 June 2008. <www.sciencedaily.com/releases/2008/06/080616152036.htm>.
Medical College of Georgia. (2008, June 20). Immune Molecule That Plays A Powerful Role In Avoiding Organ Rejection Identified. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/06/080616152036.htm
Medical College of Georgia. "Immune Molecule That Plays A Powerful Role In Avoiding Organ Rejection Identified." ScienceDaily. www.sciencedaily.com/releases/2008/06/080616152036.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) — The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) — President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) — A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins