Featured Research

from universities, journals, and other organizations

Understanding The Migration Of Cancer Cells

Date:
June 24, 2008
Source:
Goethe University Frankfurt
Summary:
Lamellipodia and filopodia are dynamic surface extensions of the cell which play a pivotal role in cell migration, invasion and wound healing. Biochemists have succeeded in clarifying the interplay between the two types of protrusions in regulating both the migratory and invasive abilities of cancer cells. They hope to exploit their exciting findings for the development of more specific cancer therapies.

Lamellipodia are veil-shaped protrusions of the plasma membrane, that can turn into upward-curled ruffles if they fail to adhere to the substrate. A dendritic meshwork of short and highly branched actin filaments might constitute their main structural component. The other type of protrusion, the filopodia, are finger-like and consist of parallel, long and unbranched actin filaments.

Interestingly, fast-crawling cells mainly form lamellipodia/ruffles while poorly migrating or non-motile cells often show the coexistence of both lamellipodial and filopodial protrusions. These observations suggest that the lamellipodia-to-filopodia selection might regulate cell migration. Moreover, the pivotal contribution of lamellipodial and filopodial protrusions to important developmental and homeostatic processes certainly requires tight regulatory mechanisms.

Unfortunately, while the microscopic morphology, dynamic development and protein signature of both lamellipodia/ruffles and filopodia have been investigated, little is known about the mechanisms whereby cells co-ordinate these actin-based extensions. Therefore, we urgently need to better understand this basic process to ultimately increase our therapeutic intervention arsenal against the metastatic progression of cancers.

It is known that the activity of regulatory proteins for the growth of the actin cytoskeleton Arp2/3 complex along with WAVE and mDia2 produce a burst of actin polymerization required for the formation of lamellipodia/ruffles and filopodia, respectively.

In the forthcoming issue of Nature Cell Biology Metello Innocenti and coworkers report that, starting from the unexpected observation that mDia2, WAVE and Arp2/3 form a complex, they discovered how filopodia extensions are generated and integrated with lamellipodia/ruffles in human cancer cells. At the molecular level, WAVE and Arp2/3 jointly promote lamellipodia/ruffles outgrowth and cell migration and at the same time inhibit mDia2-dependent filopodia formation.

Moreover, emission of filopodia occurs only after the disassembly of the mDia2-WAVE-Arp2/3 complex. Thus, it is likely that suppression of filopodia by the ruffling-making machinery is needed for cancer cells to move efficiently.

Their results pave the way to a cogent molecular analysis of the interplay between lamellipodia/ruffles and filopodia in regulating both the migratory and invasive abilities of cancer cells. The researchers anticipate that new and more specific therapies to counteract cancer will be developed exploiting these exciting findings.


Story Source:

The above story is based on materials provided by Goethe University Frankfurt. Note: Materials may be edited for content and length.


Cite This Page:

Goethe University Frankfurt. "Understanding The Migration Of Cancer Cells." ScienceDaily. ScienceDaily, 24 June 2008. <www.sciencedaily.com/releases/2008/06/080623105027.htm>.
Goethe University Frankfurt. (2008, June 24). Understanding The Migration Of Cancer Cells. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2008/06/080623105027.htm
Goethe University Frankfurt. "Understanding The Migration Of Cancer Cells." ScienceDaily. www.sciencedaily.com/releases/2008/06/080623105027.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obesity Rates Steady Even As Americans' Waistlines Expand

Obesity Rates Steady Even As Americans' Waistlines Expand

Newsy (Sep. 17, 2014) Researchers are puzzled as to why obesity rates remain relatively stable as average waistlines continue to expand. Video provided by Newsy
Powered by NewsLook.com
President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins