Featured Research

from universities, journals, and other organizations

Neural Implant That Learns With The Brain May Help Paralyzed Patients

Date:
June 24, 2008
Source:
University of Florida
Summary:
Devices known as brain-machine interfaces could someday be used routinely to help paralyzed patients and amputees control prosthetic limbs with just their thoughts. Now researchers have taken the concept a step further, devising a way for computerized devices not only to translate brain signals into movement but also to evolve with the brain as it learns.

Devices known as brain-machine interfaces could someday be used routinely to help paralyzed patients and amputees control prosthetic limbs with just their thoughts. Now, University of Florida researchers have taken the concept a step further, devising a way for computerized devices not only to translate brain signals into movement but also to evolve with the brain as it learns.

Instead of simply interpreting brain signals and routing them to a robotic hand or leg, this type of brain-machine interface would adapt to a person's behavior over time and use the knowledge to help complete a task more efficiently, sort of like an assistant, say UF College of Medicine and College of Engineering researchers who developed a model system and tested it in rats.

Until now, brain-machine interfaces have been designed as one-way conversations between the brain and a computer, with the brain doing all the talking and the computer following commands. The system UF engineers created actually allows the computer to have a say in that conversation, too, according to findings recently published online in the Institute of Electrical and Electronics Engineers journal IEEE Transactions on Biomedical Engineering.

"In the grand scheme of brain-machine interfaces, this is a complete paradigm change," said Justin C. Sanchez, Ph.D., a UF assistant professor of pediatric neurology and the study's lead author. "This idea opens up all kinds of possibilities for how we interact with devices. It's not just about giving instructions but about those devices assisting us in a common goal. You know the goal, the computer knows the goal and you work together to solve the task."

Scientists at UF and other institutions have been studying and refining brain-machine interfaces for years, developing and testing numerous variations of the technology with the goal of creating implantable, computer-chip-sized devices capable of controlling limbs or treating diseases.

The devices are programmed with complex algorithms that interpret thoughts. But the algorithms, or code, used in current brain-machine interfaces don't adapt to change, Sanchez said.

"The status quo of brain-machine interfaces that are out there have static and fixed decoding algorithms, which assume a person thinks one way for all time," he said. "We learn throughout our lives and come into different scenarios, so you need to develop a paradigm that allows interaction and growth."

To create this type of brain-machine interface, Sanchez and his colleagues developed a system based on setting goals and giving rewards.

Fitted with tiny electrodes in their brains to capture signals for the computer to unravel, three rats were taught to move a robotic arm toward a target with just their thoughts. Each time they succeeded, the rats were rewarded with a drop of water.

The computer's goal, on the other hand, was to earn as many points as possible, Sanchez said. The closer a rat moved the arm to the target, the more points the computer received, giving it incentive to determine which brain signals lead to the most rewards, making the process more efficient for the rat. The researchers conducted several tests with the rats, requiring them to hit targets that were farther and farther away. Despite this increasing difficulty, the rats completed the tasks more efficiently over time and did so at a significantly higher rate than if they had just aimed correctly by chance, Sanchez said.

"We think this dialogue with a goal is how we can make these systems evolve over time," Sanchez said. "We want these devices to grow with the user. (Also) we want users to be able to experience new scenarios and be able to control the device."

Dawn Taylor, Ph.D., an assistant professor of biomedical engineering at Case Western Reserve University, said the results of the study add a new dimension to brain-machine interface research. That UF researchers were able to train rats to use the robotic arm and then obtain significant results from animals lacking the mental prowess of primates or humans is also impressive, she said.

"It's a clear demonstration of a methodology that will work in situations when other implementations would fall apart," Taylor said.

To develop and test this brain-machine interface system, Sanchez collaborated with engineering professors Jose Principe, Ph.D., and Jose Fortes, Ph.D., and engineering doctoral students Jack DiGiovanna and Babak Mahmoudi.

The researchers received funding for the study from the National Science Foundation, the Children's Miracle Network and the UF Alumni Association.


Story Source:

The above story is based on materials provided by University of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University of Florida. "Neural Implant That Learns With The Brain May Help Paralyzed Patients." ScienceDaily. ScienceDaily, 24 June 2008. <www.sciencedaily.com/releases/2008/06/080624120000.htm>.
University of Florida. (2008, June 24). Neural Implant That Learns With The Brain May Help Paralyzed Patients. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2008/06/080624120000.htm
University of Florida. "Neural Implant That Learns With The Brain May Help Paralyzed Patients." ScienceDaily. www.sciencedaily.com/releases/2008/06/080624120000.htm (accessed August 29, 2014).

Share This




More Mind & Brain News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins