Featured Research

from universities, journals, and other organizations

Umbilical Cord Blood Cell Transplants May Help ALS Patients

Date:
June 26, 2008
Source:
University of South Florida Health
Summary:
Researchers transplanted human umbilical cord blood cells into mouse models with amyotrophic lateral sclerosis to determine which of three dose strength levels -- low, moderate and high -- delayed symptom progression and increased lifespan. Moderate strength doses of HUCB cells proved most effective and may have provided a neuroprotective effect for motor neurons through active involvement of the cells in modulating the host immune inflammatory system response.

USF neuroscientist Svitlana Garbuzova-Davis and colleagues showed that a moderate dose of HUBC cells proved most effective.
Credit: Image courtesy of University of South Florida Health

A study at the University of South Florida has shown that transplants of mononuclear human umbilical cord blood (MNChUCB) cells may help patients suffering from Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease. A disease in which the motor neurons in the spinal cord and brain degenerate, ALS leaves its victims with progressive muscle weakness, paralysis and, finally, respiratory failure three to five years after diagnosis.

In this study, USF researchers transplanted human umbilical cord blood (HUCB) cells into mouse models with ALS. Cells were transplanted at three different dose strength levels -- low, moderate and high -- to determine the degree to which dose levels of transplanted cells might delay disease symptom progression and increase lifespan. In results recently published online at PloS One (Public Library of Science), researchers determined that the moderate-strength dose of HUCB cells was most effective in increasing lifespan and reducing disease progression.

"Our results demonstrate that treatment for ALS with an appropriate dose of MNC hUBC cells may provide a neuroprotective effect for motor neurons through active involvement of these cells in modulating the host immune inflammatory system response," said the study's lead author Svitlana Garbuzova-Davis, PhD, DSc, of the Center of Excellence for Aging and Brain Repair at USF.

According to the research team, modulating immune and inflammatory effectors with HUCB cells could have a protective effect on dying motor neurons. The team had previously shown that hUBC cell transplants reduced inflammation and provided neuroprotection in models of stroke and Alzheimer's disease.

"This preclinical study indicates that MNC hUBC cells may protect motor neurons by inhibiting an immune inflammatory response by decreasing pro-inflammatory cytokines, signaling proteins in the brain and spinal cord that play a role in immune response," Garbuzova-Davis and colleagues wrote. "Proinflammatory cytokines may be indirect mediators for glial cells' contribution to motoneuron death and the decrease in these cytokines might be due to a reduction of activated microglia, the cells that form active immune defense in the central nervous system."

The research team noted, however, that the mechanism underlying the beneficial effect of hUBC cells for repairing diseased motor neurons in ALS still needs more clarification.

Suggesting that 'more is not better,' it was the moderate, not the high, dose of hUBC cells that proved most effective. Researchers speculated that the high dose may have been less effective because it induced an immunological conflict within the mouse model.

"Future studies should look at multiple injections of smaller doses over time, in order to help translate this research to clinical trials," according to co-author Paul R. Sanberg, PhD, DSc, director of the Center.

"Developing an effective treatment for ALS is complicated by the diffuse nature of motor neuron death," concluded Garbuzova-Davis. "However, cell therapy may offer a promising new treatment."

The other co-authors of the study were Cyndy Davis Sanberg and Nicole Kuzmin-Nichols of Saneron CCELL Therapeutics, Inc., and Alison E. Willing, Carmelina Gemma, Paula C. Bickford, Christina Miller, and Robert Rossi from USF.


Story Source:

The above story is based on materials provided by University of South Florida Health. Note: Materials may be edited for content and length.


Cite This Page:

University of South Florida Health. "Umbilical Cord Blood Cell Transplants May Help ALS Patients." ScienceDaily. ScienceDaily, 26 June 2008. <www.sciencedaily.com/releases/2008/06/080625073758.htm>.
University of South Florida Health. (2008, June 26). Umbilical Cord Blood Cell Transplants May Help ALS Patients. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2008/06/080625073758.htm
University of South Florida Health. "Umbilical Cord Blood Cell Transplants May Help ALS Patients." ScienceDaily. www.sciencedaily.com/releases/2008/06/080625073758.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins