Featured Research

from universities, journals, and other organizations

Sonar System For The Blind

Date:
June 26, 2008
Source:
American Institute of Physics
Summary:
Animals use echolocation for hunting and navigation, but visually impaired humans also employ echolocation as part of their orienting repertoire while navigating the world. There are a few rare individuals who can echolocate very well without assistance. However, researchers at Boston University have developed a prototype device that can enhance auditory cues while navigating an environment.

Echolocation is a method of perceiving the world by emitting noises, then listening to the reflections of these noises off objects in the environment. Animals use echolocation for hunting and navigation, but visually impaired humans also employ echolocation as part of their orienting repertoire while navigating the world. There are a few rare individuals who can echolocate very well without assistance.

However, researchers at Boston University have developed a prototype device that can enhance auditory cues while navigating an environment. The device repeatedly emits an inaudible (to humans) ultrasonic click several times per second, and each click reflects off any objects in the environment. The reflections are then detected by special head-mounted microphones, and computer processing converts the ultrasonic signals into audible signals, which the user then can hear over custom open-ear earphones.

The end result is an "auditory image" in which objects in the environment seem to emit "sounds" to the user, with objects of different shapes and textures emitting subtly different sounds, such that the user can distinguish between them. According to BU researcher Cameron Morland, the unique acoustic characteristics of the reflections enable the user to better distinguish the location and size "surface" properties of objects. For instance, sounds emitted by an object to the left will arrive at the left ear a bit sooner and louder (interaural time difference and interaural level difference).

Furthermore, sweeping the device over a surface while remaining the same distance from it, will produce a reflection with unchanged velocity of the surface of an object is flat. If the surface is tilted so it moves closer to the user, it will sound higher in pitch; tilted the other way, it will sound lower in pitch (a Doppler shift). A roughly textured surface will have some regions that are closer, and others that are further away, and users can easily learn to recognize those differences, and discern the resulting pattern of increased and decreased pitch. "Venetian blinds sound quite different than a flat surface, or a bookshelf packed with different-sized books," says Morland.

The BU team has built a prototype capable of simple detection of objects and open spaces, and preliminary tests show that most people can echolocate a little using the device, and improve quickly with practice. They are now refining their prototype to function in more complex, real-world environments. Morland believes that given enough practice, people should be able to echolocate very well using the device - perhaps better than they could unassisted, since higher frequencies outside the normal range of human hearing are more useful for echolocation. (Movies of the device can be found at http://cns.bu.edu/~cjmorlan/research)

Their paper, "What it is like to be a bat: A sonar system for humans," will be presented at 5:20 p.m. on Tuesday, July 1 at Acoustics '08 Paris -- the largest meeting ever devoted to acoustical science, to be held Monday June 30 through Friday July 4 at the Palais de Congrθs in Paris, France.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Sonar System For The Blind." ScienceDaily. ScienceDaily, 26 June 2008. <www.sciencedaily.com/releases/2008/06/080625153404.htm>.
American Institute of Physics. (2008, June 26). Sonar System For The Blind. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2008/06/080625153404.htm
American Institute of Physics. "Sonar System For The Blind." ScienceDaily. www.sciencedaily.com/releases/2008/06/080625153404.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) — Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins