Featured Research

from universities, journals, and other organizations

New Efficiency Benchmark For Dye-sensitized Solar Cells

Date:
July 2, 2008
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Scientists have achieved a record light conversion efficiency of 8.2 percent in solvent-free dye-sensitized solar cells. This breakthrough in efficiency without the use of volatile organic solvents will make it possible to pursue large scale, outdoor practical application of lightweight, inexpensive, flexible dye-sensitized solar films that are stable over long periods of light and heat exposure.

Scientists have achieved a record light conversion efficiency of 8.2% in solvent-free dye-sensitized solar cells. This breakthrough in efficiency without the use of volatile organic solvents will make it possible to pursue large scale, outdoor practical application of lightweight, inexpensive, flexible dye-sensitized solar films that are stable over long periods of light and heat exposure.

The new paper published online June 29 in the journal Nature Materials by EPFL professor Michael Graetzel, Shaik Zakeeruddin and colleagues from the Changchun Institute of Applied Chemistry at the Chinese Academy of Sciences.

Dye-sensitized solar cell technology, invented by Michael Grätzel at EPFL in the 1990s, shows great promise as a cheap alternative to expensive silicon solar cells. Dye-sensitized cells imitate the way that plants and certain algae convert sunlight into energy. The cells are made up of a porous film of tiny (nanometer sized) white pigment particles made out of titanium dioxide.

The latter are covered with a layer of dye which is in contact with an electrolyte solution. When solar radiation hits the dye it injects a negative charge in the pigment nanoparticle and a positive charge into the electrolyte resulting in the conversion of sunlight into electrical energy. The cells are inexpensive, easy to produce and can withstand long exposure to light and heat compared with traditional silicon-based solar cells.

Currently, state-of-the-art dye-sensitized cells have an overall light conversion efficiency greater than 11%, still about two times lower than silicon cell technology.

A major drawback to the dye-sensitized cell technology is the electrolyte solution, which is made up of volatile organic solvents and must be carefully sealed. This, along with the fact that the solvents permeate plastics, has precluded large-scale outdoor application and integration into flexible structures.

To overcome these limitations, Grätzel and his colleagues developed a new concept -- a mixture of three solid salts as an alternative to using organic solvents as an electrolyte solution. When the three solid components are mixed together in the right proportion they turn into a melt showing excellent stability and efficiency.

Grätzel is confident that further development of these types of electrolyte mixtures will lead to large-scale practical application of dye-sensitized solar cell technology, reinforcing solar energy's role as a cornerstone of alternative energy production.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "New Efficiency Benchmark For Dye-sensitized Solar Cells." ScienceDaily. ScienceDaily, 2 July 2008. <www.sciencedaily.com/releases/2008/06/080629130741.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2008, July 2). New Efficiency Benchmark For Dye-sensitized Solar Cells. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2008/06/080629130741.htm
Ecole Polytechnique Fédérale de Lausanne. "New Efficiency Benchmark For Dye-sensitized Solar Cells." ScienceDaily. www.sciencedaily.com/releases/2008/06/080629130741.htm (accessed August 29, 2014).

Share This




More Earth & Climate News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) — The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) — Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com
Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) — Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins