Featured Research

from universities, journals, and other organizations

World's Smallest High Performance, Low Energy Sensor

Date:
July 7, 2008
Source:
University of Southampton
Summary:
Scientists are developing the world's smallest, high-performance and low-power sensor in silicon which will have applications in biosensing and environmental monitoring.

Scientists at the University of Southampton’s School of Electronics and Computer Science (ECS) are developing the world’s smallest, high-performance and low-power sensor in silicon which will have applications in biosensing and environmental monitoring.

Professor Hiroshi Mizuta and his team at ECS are part of the three year European FP7-funded NEMSIC (Nano-electro-mechanical-system-integrated-circuits) project which will make these devices possible.

As well as being the smallest sensor on the market to date, it will have extreme sensitivity and very low power consumption. It will achieve this by co-integrating single-electron transistors (SETs) and nano-electro-mechanical systems (NEMS) on a common silicon technology platform.

‘Power consumption is a big issue at the moment as devices use current whether they are switched off and on’ said Professor Mizuta. ‘The single-electron transistor combined with the NEM device technology reduces power consumption at both ON and OFF states of the sensor. Stand-by power is reduced to zero by having a complete sleep with the NEM switch when it is off.’

Professor Mizuta and his team will develop the single-electron transistor with a unique suspended silicon nanobridge which will work as an extremely sensitive detector for biological and chemical molecules.

‘This is the first time that anyone has combined these two nanotechnologies to develop a smart sensor,’ said Professor Mizuta. ‘The traditional CMOS (Complementary metal-oxide-semiconductor) approach has many limitations so we needed to find a new approach.’

The sensing devices will need to be made to the nanoscale, which will be made possible by the new electron beam lithography machine which will be available in the new ECS Mountbatten building when it opens in July.

‘This sensor will be the smallest and use less power than any other on the market,’ said Professor Mizuta. ‘The fact that it will be at the nanoscale means that it will be able to detect either single-charge transfer and/or change in masses caused by a small amount of chemical and biological molecules electrically’.


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

University of Southampton. "World's Smallest High Performance, Low Energy Sensor." ScienceDaily. ScienceDaily, 7 July 2008. <www.sciencedaily.com/releases/2008/07/080702172041.htm>.
University of Southampton. (2008, July 7). World's Smallest High Performance, Low Energy Sensor. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2008/07/080702172041.htm
University of Southampton. "World's Smallest High Performance, Low Energy Sensor." ScienceDaily. www.sciencedaily.com/releases/2008/07/080702172041.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
New York Auto Show Highlights Latest in Car Tech

New York Auto Show Highlights Latest in Car Tech

AP (Apr. 16, 2014) With more than 1 million visitors annually, the New York International Auto Show is one of the most important shows for the U.S. auto industry. This year's show featured the latest in high technology, and automotive bling. (April 16) Video provided by AP
Powered by NewsLook.com
Google Patents Contact Lens Cameras; Internet Is Wary

Google Patents Contact Lens Cameras; Internet Is Wary

Newsy (Apr. 15, 2014) Google has filed for a patent to develop contact lenses capable of taking photos. The company describes possible benefits to blind people. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins