Featured Research

from universities, journals, and other organizations

Room Temperature Superconductivity: One Step Closer To Holy Grail Of Physics

Date:
July 10, 2008
Source:
University of Cambridge
Summary:
Scientists have for the first time identified a key component to unraveling the mystery of room temperature superconductivity. Materials that could potentially transport electricity with zero resistance at room temperature hold vast potential -- magnetically levitated superfast train, lossless power generators and transmission lines, powerful supercomputers, etc.

Magnetic fields penetrate the superconducting state in an array of vortices where superconductivity is locally destroyed.
Credit: National High Magnetic Field Laboratory

Scientists at the University of Cambridge have for the first time identified a key component to unravelling the mystery of room temperature superconductivity, according to a paper published in the journal Nature.

The quest for room temperature superconductivity has gripped physics researchers since they saw the possibility more than two decades ago. Materials that could potentially transport electricity with zero loss (resistance) at room temperature hold vast potential; some of the possible applications include a magnetically levitated superfast train, efficient magnetic resonance imaging (MRI), lossless power generators, transformers, and transmission lines, powerful supercomputers, etc.

Unfortunately, scientists have been unable to decipher how copper oxide materials superconduct at extremely cold temperatures (such as that of liquid nitrogen), much less design materials that can superconduct at higher temperatures.

Materials that are known to superconduct at the highest temperatures are, unexpectedly, ceramic insulators that behave as magnets before 'doping' (the method of introducing impurities to a semiconductor to modify its electrical properties). Upon doping charge carriers (holes or electrons) into these parent magnetic insulators, they mysteriously begin to superconduct, i.e. the doped carriers form pairs that carry electricity without loss.

The essential conundrum facing researchers in this area has been: how does a magnet that cannot transport electricity transform into a superconductor that is a perfect conductor of electricity? The Cambridge team have made a significant advance in answering this question.

The researchers have discovered where the charge 'hole' carriers that play a significant role in the superconductivity originate within the electronic structure of copper-oxide superconductors. These findings are particularly important for the next step of deciphering the glue that binds the holes together and determining what enables them to superconduct.

Dr Suchitra E. Sebastian, lead author of the study, commented, "An experimental difficulty in the past has been accessing the underlying microscopics of the system once it begins to superconduct. Superconductivity throws a manner of 'veil' over the system, hiding its inner workings from experimental probes. A major advance has been our use of high magnetic fields, which punch holes through the superconducting shroud, known as vortices - regions where superconductivity is destroyed, through which the underlying electronic structure can be probed.

"We have successfully unearthed for the first time in a high temperature superconductor the location in the electronic structure where 'pockets' of doped hole carriers aggregate. Our experiments have thus made an important advance toward understanding how superconducting pairs form out of these hole pockets."

By determining exactly where the doped holes aggregate in the electronic structure of these superconductors, the researchers have been able to advance understanding in two vital areas:

(1) A direct probe revealing the location and size of pockets of holes is an essential step to determining how these particles stick together to superconduct.

(2) Their experiments have successfully accessed the region betwixt magnetism and superconductivity: when the superconducting veil is partially lifted, their experiments suggest the existence of underlying magnetism which shapes the hole pockets. Interplay between magnetism and superconductivity is therefore indicated - leading to the next question to be addressed.

Do these forms of order compete, with magnetism appearing in the vortex regions where superconductivity is killed, as they suggest? Or do they complement each other by some more intricate mechanism? One possibility they suggest for the coexistence of two very different physical phenomena is that the non-superconducting vortex cores may behave in concert, exhibiting collective magnetism while the rest of the material superconducts.


Story Source:

The above story is based on materials provided by University of Cambridge. Note: Materials may be edited for content and length.


Journal Reference:

  1. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor. Nature, July 9, 2008

Cite This Page:

University of Cambridge. "Room Temperature Superconductivity: One Step Closer To Holy Grail Of Physics." ScienceDaily. ScienceDaily, 10 July 2008. <www.sciencedaily.com/releases/2008/07/080709144157.htm>.
University of Cambridge. (2008, July 10). Room Temperature Superconductivity: One Step Closer To Holy Grail Of Physics. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/07/080709144157.htm
University of Cambridge. "Room Temperature Superconductivity: One Step Closer To Holy Grail Of Physics." ScienceDaily. www.sciencedaily.com/releases/2008/07/080709144157.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins