Featured Research

from universities, journals, and other organizations

Computer Simulations Help Predict Bone Fracture Risk

Date:
July 14, 2008
Source:
ETH Zurich/Swiss Federal Institute of Technology
Summary:
Using a Blue Gene supercomputer, scientists have demonstrated the most extensive simulation yet of actual human bone structure. This achievement may lead to better clinical tools to improve the diagnosis and treatment of osteoporosis, a widespread disease that worldwide affects 1 in 3 women and 1 in 5 men over the age of 50.

The image shows the effective strain on a 5 by 5 by 5 mm human vertebra specimen under a load corresponding to the person's weight when standing. The areas in blue show stronger parts of the bone; weaker parts are shown in red.
Credit: ETH Zurich / IBM research

Using a Blue Gene supercomputer, scientists of ETH Zurich and the IBM Zurich Research Laboratory demonstrated the most extensive simulation yet of actual human bone structure. This achievement may lead to better clinical tools to improve the diagnosis and treatment of osteoporosis, a widespread disease that worldwide affects 1 in 3 women and 1 in 5 men over the age of 50.

Related Articles


With the goal of developing an accurate, powerful and fast method to automate the analysis of bone strength, scientists of the ETH Zurich Departments of Mechanical and Process Engineering and Computer Science teamed up with supercomputing experts at IBM’s Zurich Research Laboratory. The breakthrough method developed by the team combines density measurements with a large-scale mechanical analysis of the innerbone microstructure.

Using large-scale, massively parallel simulations, the researchers were able to obtain a dynamic “heat map” of strain, which changes with the load applied to the bone. This map shows the clinician exactly where and under what load a bone is likely to fracture. “With that knowledge, a clinician can also detect osteoporotic damage more precisely and, by adjusting a surgical plate appropriately, can best determine the location of the damage,” explains Dr. Costas Bekas of IBM’s Computational Sciences team in Zurich.

”The joint team utilized the massively large-scale capabilities of the 8-rack Blue Gene /L supercomputer to conduct the first simulations on a 5 by 5 mm specimen of real bone. Within 20 minutes, the supercomputer simulation generated 90 Gigabytes of output data. “It is this combination of increased speed and size that will allow solving clinically relevant cases in acceptable time and unprecedented detail”, says Professor Ralph Mόller, Director of the ETH Zurich Institute for Biomechanics.

Going beyond static bone strength

Ten years ago, the world’s most sophisticated supercomputer, called Deep Blue, would not have been able to handle the sheer size of the calculations. Even with sufficient system memory, it would have taken roughly a week of computing time - too long for meaningful impact on diagnosis and treatment. “Ten years from now, today’s supercomputers’ performance will be available in desktop systems, making such simulations of bone strength a routine practice in computer to-mography,” predicts Dr. Alessandro Curioni, manager of the Computational Sciences group at IBM’s Zurich Research Laboratory.

ETH Zurich Professor Peter Arbenz, who initiated the collaboration of the involved groups, explains that what was first needed was state of the art in numerical algorithms in order to solve extremely large problems in surprisingly short time, and that it is the first fundamental step towards clinical use of large scale bone simulations. “We are at the beginning of an exciting journey. This line of research must absolutely be continued in order to achieve our goal," he states. Scientists in future aim to advance simulation techniques to go beyond the calculation of static bone strength to the simulation of the actual formation of the fractures for individual patients, in yet another step towards the fast, reliable and early detection of people at high fracture risk.

Reference: The work “Extreme Scalability Challenges in Analyses of Human Bone Structures” by ETH scientists Peter Arbenz, Cyril Flaig, Harry van Lenthe, Ralph Mueller, Andreas Wirth and ZRL researchers Costas Bekas and Alessandro Curioni was presented at the IACM/ECCOMAS 2008 conference in Venice, Italy, on July 2.


Story Source:

The above story is based on materials provided by ETH Zurich/Swiss Federal Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

ETH Zurich/Swiss Federal Institute of Technology. "Computer Simulations Help Predict Bone Fracture Risk." ScienceDaily. ScienceDaily, 14 July 2008. <www.sciencedaily.com/releases/2008/07/080709212132.htm>.
ETH Zurich/Swiss Federal Institute of Technology. (2008, July 14). Computer Simulations Help Predict Bone Fracture Risk. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/07/080709212132.htm
ETH Zurich/Swiss Federal Institute of Technology. "Computer Simulations Help Predict Bone Fracture Risk." ScienceDaily. www.sciencedaily.com/releases/2008/07/080709212132.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins