Science News
from research organizations

Computer Simulations Help Predict Bone Fracture Risk

Date:
July 14, 2008
Source:
ETH Zurich/Swiss Federal Institute of Technology
Summary:
Using a Blue Gene supercomputer, scientists have demonstrated the most extensive simulation yet of actual human bone structure. This achievement may lead to better clinical tools to improve the diagnosis and treatment of osteoporosis, a widespread disease that worldwide affects 1 in 3 women and 1 in 5 men over the age of 50.
Share:
       
Total shares:  
FULL STORY

The image shows the effective strain on a 5 by 5 by 5 mm human vertebra specimen under a load corresponding to the person's weight when standing. The areas in blue show stronger parts of the bone; weaker parts are shown in red.
Credit: ETH Zurich / IBM research

Using a Blue Gene supercomputer, scientists of ETH Zurich and the IBM Zurich Research Laboratory demonstrated the most extensive simulation yet of actual human bone structure. This achievement may lead to better clinical tools to improve the diagnosis and treatment of osteoporosis, a widespread disease that worldwide affects 1 in 3 women and 1 in 5 men over the age of 50.

With the goal of developing an accurate, powerful and fast method to automate the analysis of bone strength, scientists of the ETH Zurich Departments of Mechanical and Process Engineering and Computer Science teamed up with supercomputing experts at IBM’s Zurich Research Laboratory. The breakthrough method developed by the team combines density measurements with a large-scale mechanical analysis of the innerbone microstructure.

Using large-scale, massively parallel simulations, the researchers were able to obtain a dynamic “heat map” of strain, which changes with the load applied to the bone. This map shows the clinician exactly where and under what load a bone is likely to fracture. “With that knowledge, a clinician can also detect osteoporotic damage more precisely and, by adjusting a surgical plate appropriately, can best determine the location of the damage,” explains Dr. Costas Bekas of IBM’s Computational Sciences team in Zurich.

”The joint team utilized the massively large-scale capabilities of the 8-rack Blue Gene /L supercomputer to conduct the first simulations on a 5 by 5 mm specimen of real bone. Within 20 minutes, the supercomputer simulation generated 90 Gigabytes of output data. “It is this combination of increased speed and size that will allow solving clinically relevant cases in acceptable time and unprecedented detail”, says Professor Ralph Müller, Director of the ETH Zurich Institute for Biomechanics.

Going beyond static bone strength

Ten years ago, the world’s most sophisticated supercomputer, called Deep Blue, would not have been able to handle the sheer size of the calculations. Even with sufficient system memory, it would have taken roughly a week of computing time - too long for meaningful impact on diagnosis and treatment. “Ten years from now, today’s supercomputers’ performance will be available in desktop systems, making such simulations of bone strength a routine practice in computer to-mography,” predicts Dr. Alessandro Curioni, manager of the Computational Sciences group at IBM’s Zurich Research Laboratory.

ETH Zurich Professor Peter Arbenz, who initiated the collaboration of the involved groups, explains that what was first needed was state of the art in numerical algorithms in order to solve extremely large problems in surprisingly short time, and that it is the first fundamental step towards clinical use of large scale bone simulations. “We are at the beginning of an exciting journey. This line of research must absolutely be continued in order to achieve our goal," he states. Scientists in future aim to advance simulation techniques to go beyond the calculation of static bone strength to the simulation of the actual formation of the fractures for individual patients, in yet another step towards the fast, reliable and early detection of people at high fracture risk.

Reference: The work “Extreme Scalability Challenges in Analyses of Human Bone Structures” by ETH scientists Peter Arbenz, Cyril Flaig, Harry van Lenthe, Ralph Mueller, Andreas Wirth and ZRL researchers Costas Bekas and Alessandro Curioni was presented at the IACM/ECCOMAS 2008 conference in Venice, Italy, on July 2.


Story Source:

The above story is based on materials provided by ETH Zurich/Swiss Federal Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

ETH Zurich/Swiss Federal Institute of Technology. "Computer Simulations Help Predict Bone Fracture Risk." ScienceDaily. ScienceDaily, 14 July 2008. <www.sciencedaily.com/releases/2008/07/080709212132.htm>.
ETH Zurich/Swiss Federal Institute of Technology. (2008, July 14). Computer Simulations Help Predict Bone Fracture Risk. ScienceDaily. Retrieved May 23, 2015 from www.sciencedaily.com/releases/2008/07/080709212132.htm
ETH Zurich/Swiss Federal Institute of Technology. "Computer Simulations Help Predict Bone Fracture Risk." ScienceDaily. www.sciencedaily.com/releases/2008/07/080709212132.htm (accessed May 23, 2015).

Share This Page:


Health & Medicine News
May 23, 2015

Latest Headlines
updated 12:56 pm ET