Featured Research

from universities, journals, and other organizations

Researchers Hone Technique To KO Pediatric Brain Tumors

Date:
July 15, 2008
Source:
Washington University in St. Louis
Summary:
Scientists are a step closer to delivering cancer-killing drugs to pediatric brain tumors, similar to the tumor that Senator Ted Kennedy is suffering from. They developed polymeric nanoparticles that can entrap doxorubicin, a drug commonly used in chemotherapy, and slowly release the drug over an extended time. Such tumors are often difficult to completely remove surgically; frequently, cancerous cells remain following surgery and the tumor returns. Chemotherapy, while effective at treating tumors, often harms healthy cells as well, leading to severe side effects especially in young children that are still developing their brain functions.

An interdisciplinary team of researchers at Washington University in St. Louis, led by Karen L. Wooley, Ph.D., James S. McDonnell Distinguished University Professor in Arts & Sciences, is a step closer to delivering cancer-killing drugs to pediatric brain tumors, similar to the tumor that Senator Ted Kennedy is suffering from.

Such tumors are often difficult to completely remove surgically; frequently, cancerous cells remain following surgery and the tumor returns. Chemotherapy, while effective at treating tumors, often harms healthy cells as well, leading to severe side effects especially in young children that are still developing their brain functions.

Slow hand

In an effort to solve this problem, the Wooley lab has developed polymeric nanoparticles that can trap doxorubicin, a drug commonly used in chemotherapy, and slowly release the drug over an extended time period. By fine-tuning the polymer composition, they were able to tailor the release rate of the drug and improve its solubility.

The work was published in Chemical Communications and supported by The Children's Discovery Institute of St. Louis Children's Hospital and by the National Heart, Lung and Blood Institute of the National Institutes of Health as a Program of Excellence in Nanotechnology.

With their approach, the Wooley lab was able to load more doxorubicin into the cores of the nanoparticles, compared with similar constructs.

"Typically, a polymeric micelle has three to four percent (drug) loading per nanoparticle mass. In our case, we achieved 18 to 19 percent for our nanoparticles," said Andreas Nystrom, Ph.D., a post-doctoral associate, supported by the Knut and Alice Wallenberg Foundation, who worked on the project.

However, the nanoparticles carrying the doxorubicin were not as effective at killing cancer cells compared to the neat drug, because in these initial nanoparticles, no targeting groups were included and also the entire drug payload of the nanoparticle is not released. The identification and attachment of targeting ligands onto the nanoparticles and the rate and extent of drug release are now what the researchers will concentrate on and seek to improve. Ligands in this application are comprised of peptides and antibodies that bind to specific cell receptors over-expressed in cancer cells.

The cell studies were performed in vitro by Zhiqiang (Jack) Xu, Ph.D., a post-doctoral associate, together with Professor Jeff Leonard, M.D., in the Department of Neurological Surgery and Professor Sheila Stewart, Ph.D., in the Department of Cell Biology and Physiology, both in the School of Medicine at Washington University. Ultimately, in vivo, the nanoparticles are expected to target the tumors through the use of active targeting ligands and also through passive diffusion, as particles are well known to be taken up selectively into tumors by a process called the enhanced permeability and retention effect. The amount of drug released from the nanoparticles "might be enough for the intended therapy, if side effects are limited by selective tumor targeting," Nystrom said.

Seek and destroy

For these drug-filled nanoparticles to be effective for treating brain tumors, one challenge remains — decorating the nanoparticles with signatures that direct them to the tumors and away from healthy cells, a process known as tissue specific targeting. Once attached to the tumor, the nanoparticles can release their deadly contents, killing the cancer cells and leaving the healthy cells unharmed.

"Everything depends on getting the nanoparticle to the tissue (tumor) of choice," said Nystrom.

Wooley agrees. "We have been studying these nanoparticles for some time now as a platform technology, achieving high radiolabeling efficiencies and demonstrating variable bio-distributions through a collaboration with the laboratory of Professor Mike Welch, in the Department of Radiology," she said. "Now, we are poised to take advantage of the progress made to develop the particles for diagnosis and treatment of several diseases.

"In this latest work, the nanoparticles were designed with thermally tunable core properties to serve as a host system that retains drug molecules at room temperature and then releases the cargo at physiological temperature, with a controlled drug release profile. The results are highly promising and are allowing us to move forward to a fully functional, tumor-targeted drug delivery device. The key to making this happen is the interdisciplinary team of investigators, each of whom brings a different chemical, biological or medical expertise."


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University in St. Louis. "Researchers Hone Technique To KO Pediatric Brain Tumors." ScienceDaily. ScienceDaily, 15 July 2008. <www.sciencedaily.com/releases/2008/07/080714151520.htm>.
Washington University in St. Louis. (2008, July 15). Researchers Hone Technique To KO Pediatric Brain Tumors. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2008/07/080714151520.htm
Washington University in St. Louis. "Researchers Hone Technique To KO Pediatric Brain Tumors." ScienceDaily. www.sciencedaily.com/releases/2008/07/080714151520.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How 'Yes Means Yes' Defines Sexual Assault

How 'Yes Means Yes' Defines Sexual Assault

Newsy (Sep. 29, 2014) Aimed at reducing sexual assaults on college campuses, California has adopted a new law changing the standard of consent for sexual activity. Video provided by Newsy
Powered by NewsLook.com
Scientists May Have Found An Early Sign Of Pancreatic Cancer

Scientists May Have Found An Early Sign Of Pancreatic Cancer

Newsy (Sep. 29, 2014) Researchers looked at 1,500 blood samples and determined people who developed pancreatic cancer had more branched chain amino acids. Video provided by Newsy
Powered by NewsLook.com
Colo. Doctors See Cluster of Enterovirus Cases

Colo. Doctors See Cluster of Enterovirus Cases

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Dr.'s Unsure of Cause of Fast-Spreading Virus

Dr.'s Unsure of Cause of Fast-Spreading Virus

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins