Featured Research

from universities, journals, and other organizations

Arresting And Self-healing Cracks: Paving The Way For Next Generation Composite Materials

Date:
August 4, 2008
Source:
Imperial College London
Summary:
Materials that can stop a crack and then self-heal have been brought a step closer to reality. New research will focus on carbon fiber polymer composites - materials made by combining extremely stiff and strong fibers with polymers to create strong, durable and lightweight materials. These are particularly important in the aerospace and transport industries, which use carbon fiber composites to make aircraft wings, helicopter rotor blades and ship hulls.

Materials that can stop a crack and then self-heal have been brought a step closer to reality thanks to a new project launched by Imperial College London and the University of Bristol.

Related Articles


The Crack Arrest and Self-Healing in Composite Structures (CRASHCOMPS) project will be funded over four years with a 1.2 million grant from the Engineering and Physical Sciences Research Council and the Defence Science and Technology Laboratory.

The team's research will focus on carbon fibre polymer composites - materials made by combining extremely stiff and strong fibres with polymers to create strong, durable and lightweight materials. These are particularly important in the aerospace and transport industries, which use carbon fibre composites to make aircraft wings, helicopter rotor blades and ship hulls.

However, use and development of composites has been limited by concerns that they are susceptible to defects and damage. Dr Emile Greenhalgh from Imperial College London's Composites Centre explains that because of this, current applications use excessively heavy parts, which leads to higher fuel consumption:

"Because engineers are worried about cracks forming in composites, they currently build many aircraft parts much stronger, and therefore heavier, than may be necessary, so they can withstand a 40% loss in strength during use. This means more fuel is needed to get them off the ground and flying to their destinations, which is far from ideal, in terms of aviation's impact on the environment," he said.

The aim of the new research project is to develop tailor-made composite materials which arrest the development of cracks, and heal themselves, which could be used with confidence to build lightweight, safe, damage-resistant components for more fuel-efficient aircraft, trains, cars and ships.

To achieve this, the team at Imperial will introduce materials which will deflect the path of the crack, and absorb the fracture energy associated with it. Once the crack has been arrested, the team at University of Bristol will utilise materials which 'bleed and clot', healing the crack and recovering much of the original material strength.

Dr. Ian Bond from the University of Bristol's Advanced Composites Centre for Innovation and Science, adds: "Nature provides a great deal of inspiration for how we can better engineer high performance structures. In addition to strength and stiffness, attributes such as toughness and self-healing are widely found throughout the range of biological materials, many of which are composites. This project will seek to understand and implement a variety of innovative and bio-inspired approaches to deliver a breakthrough in the performance of advanced composite materials."

The new funding will also enable a free annual CRASHCOMPS workshop, held at Bristol and Imperial on alternate years, providing a forum for researchers and industry to review the results and contribute to the direction of the programme.


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Cite This Page:

Imperial College London. "Arresting And Self-healing Cracks: Paving The Way For Next Generation Composite Materials." ScienceDaily. ScienceDaily, 4 August 2008. <www.sciencedaily.com/releases/2008/07/080717210023.htm>.
Imperial College London. (2008, August 4). Arresting And Self-healing Cracks: Paving The Way For Next Generation Composite Materials. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2008/07/080717210023.htm
Imperial College London. "Arresting And Self-healing Cracks: Paving The Way For Next Generation Composite Materials." ScienceDaily. www.sciencedaily.com/releases/2008/07/080717210023.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins