Featured Research

from universities, journals, and other organizations

Nanoparticles + Light = Dead Tumor Cells

Date:
July 31, 2008
Source:
American Institute of Physics
Summary:
Medical physicists at the University of Virginia have created a novel way to kill tumor cells using nanoparticles and light. The technique, devised by Wensha Yang, an instructor in radiation oncology at the University of Virginia, and colleagues Ke Sheng, Paul W. Read, James M. Larner, and Brian P. Helmke, employs quantum dots. Quantum dots are semiconductor nanostructures, 25 billionths of a meter in diameter, which can confine electrons in three dimensions and emit light when exposed to ultraviolet radiation.

Medical physicists at the University of Virginia have created a novel way to kill tumor cells using nanoparticles and light. The technique, devised by Wensha Yang, an instructor in radiation oncology at the University of Virginia, and colleagues Ke Sheng, Paul W. Read, James M. Larner, and Brian P. Helmke, employs quantum dots. Quantum dots are semiconductor nanostructures, 25 billionths of a meter in diameter, which can confine electrons in three dimensions and emit light when exposed to ultraviolet radiation.

Yang and his colleagues realized that quantum dots also give off light when exposed to megavoltage x-rays, such as those used in cancer radiotherapy. That property, the scientists realized, makes quantum dots an ideal mediator in therapies employing light-activated compounds to treat cancer.

A compound called Photofrin is the only photosensitizer currently approved by the FDA. Photofrin is absorbed by cancer cells and, upon exposure to light, becomes active and kills cells. It is currently used to treat certain kinds of shallowly located tumors, but Yang and his colleagues realized that combing Photofrin with quantum dots could create an efficient method to kill even deeply seated cancer cells. Upon exposure to high doses of radiation, the dots become luminescent and emit light; that light triggers the cancer-killing activity of the Photofrin. In theory, the process, which so far has been studied only in cancer cells grown in culture, could work on tumors located too deep within the body to be reached by an external light source.

To prevent normal tissues from being affected by the treatment, the toxicity of the quantum dot-Photofrin conjugate is only activated when radiation is applied. Also, the area to be treated is targeted with conformal radiation, which is delivered with high precision within the three-dimensional contours of the tumor, with minimal spillover to surrounding healthy tissues. As a result, Yang says, "the toxicity of the drug is substantially lower in the lower radiation dose area" outside the boundaries of the tumor. In tests on human lung carcinoma cells, the process resulted in a 2-6 times lower tumor cell survival compared to radiation alone, but with minimal toxicity to nearby cells.

Yang will describe the technique in his talk, "Enhanced Energy Transfer From Mega-Voltage Radiation to the Tumor Cell Killing Singlet Oxygen by Semiconductive Nanoparticles," on Tuesday, July 29, during the 50th annual meeting of the American Association of Physicists in Medicine (AAPM), the largest medical physics association in the world. The meeting takes place from July 27 to July 31, in Houston, Texas.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Nanoparticles + Light = Dead Tumor Cells." ScienceDaily. ScienceDaily, 31 July 2008. <www.sciencedaily.com/releases/2008/07/080729133423.htm>.
American Institute of Physics. (2008, July 31). Nanoparticles + Light = Dead Tumor Cells. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2008/07/080729133423.htm
American Institute of Physics. "Nanoparticles + Light = Dead Tumor Cells." ScienceDaily. www.sciencedaily.com/releases/2008/07/080729133423.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins