Featured Research

from universities, journals, and other organizations

B Cells Can Act Alone In Autoimmune Disease

Date:
August 8, 2008
Source:
Yale University
Summary:
B cells, the source of damaging autoantibodies, have long been thought to depend upon T cells for their activation and were not considered important in the initiation of autoimmune diseases like lupus or rheumatoid arthritis. An article in the journal Immunity turns this paradigm on its head by showing that in systemic autoimmune diseases B cells can be activated the absence of T cells.

B cells, the source of damaging autoantibodies, have long been thought to depend upon T cells for their activation and were not considered important in the initiation of autoimmune diseases like lupus or rheumatoid arthritis.

In the Aug. 7 online issue of the journal of Immunity, Yale University researchers turn this paradigm on its head by showing that in systemic autoimmune diseases B cells can be activated the absence of T cells.

The study suggests new ways to intervene in the immune system's chronic attacks on the body's own tissue.

The findings were surprising because many scientists believed that B cells remain quiet in autoimmune diseases unless they are stimulated first by T cells, said Mark Shlomchik, MD, professor of laboratory medicine and immunobiology at the Yale School of Medicine and senior author of the study.

"It became a chicken or egg problem. If cooperation between T and B cells is needed to create an autoimmune disease, who falls off the fence first, and why?'' Shlomchik said.

Recently this same Yale group along with collaborators at Boston University discovered an unexpected role in autoimmunity of Toll-like receptors, previously thought to be stimulated by molecules expressed on microbial pathogens. Shlomchik and his colleagues showed that they can also recognize and react to "self" molecules, in particular mammalian DNA and RNA. When this occurs, these receptors help activate B cells that make the classical autoantibodies of lupus.

The new Yale study now shows that these signals substitute for T cells in starting the autoimmune process in B cells. The researchers propose that once B cells are activated via Toll-like receptors, they can subsequently recruit T cells and that this can lead to a "vicious cycle" of chronic autoimmune disease in which the two types of cell activate each other.

The findings might explain why treatments that target T cells in autoimmune diseases have fared relatively poorly, while newer treatments aimed at B cells have shown great promise, he said.

The current study is a direct outgrowth of groundbreaking work conducted at Yale over the last 15 years that showed that elements of the innate, or non-specific immune system such as Toll-like receptors, needed to be triggered before more sophisticated adaptive immune system of humans and other animals could hone in on specific pathogens.

Other authors on the paper are Robin A. Herlands, Sean R. Christensen, Rebecca A. Sweet and Uri Hershberg.

The research was funded by the NIH Institutes of Arthritis and Musculoskeletal and Skin Diseases and of Allergy and Infectious Diseases.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "B Cells Can Act Alone In Autoimmune Disease." ScienceDaily. ScienceDaily, 8 August 2008. <www.sciencedaily.com/releases/2008/08/080807130826.htm>.
Yale University. (2008, August 8). B Cells Can Act Alone In Autoimmune Disease. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2008/08/080807130826.htm
Yale University. "B Cells Can Act Alone In Autoimmune Disease." ScienceDaily. www.sciencedaily.com/releases/2008/08/080807130826.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins