Featured Research

from universities, journals, and other organizations

Molecular Switch Boosts Brain Activity Associated With Schizophrenia

Date:
August 14, 2008
Source:
NIH/National Institute of Child Health and Human Development
Summary:
People with schizophrenia have an alteration in a pattern of brain electrical activity associated with learning and memory. Now, researchers have identified in mouse brain tissue a molecular switch that, when thrown, increases the strength of this electrical pattern. The researchers found that adding the brain chemical Neuregulin-1 to the brain tissue boosted the electrical signals that the tissue generated.

People with schizophrenia have an alteration in a pattern of brain electrical activity associated with learning and memory. Now, researchers from the National Institutes of Health and Sweden’s Karolinska Institute have identified in mouse brain tissue a molecular switch that, when thrown, increases the strength of this electrical pattern. The researchers found that adding the brain chemical Neuregulin-1 to the brain tissue boosted the electrical signals that the tissue generated.

Related Articles


"This finding may yield new insights into a form of altered brain activity occurring in schizophrenia," said Duane Alexander, M.D., director of NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). "It may also lead to new methods for screening drugs with potential as schizophrenia treatments."

The findings appear online in the journal Cerebral Cortex. The research was conducted by Andre Fisahn, Ph.D, of the Karolinska Institute, in collaboration with Andres Buonanno, Ph.D, and his colleagues in NICHD’s section on Molecular Neurobiology. Dr. Buonanno was the study’s senior author.

Schizophrenia affects about 1.1 percent of the U.S. population. Symptoms include delusions, hallucinations, disordered thinking and social withdrawal.

As nerve impulses travel through the brain, they emit weak electrical signals that can be measured through sensors attached to the scalp. The different parts of the brain emit different kinds of electrical signals. These signals vary with the kinds of mental activity taking place within the brain.

Dr. Buonanno and his colleagues studied electrical patterns known as gamma oscillations. Ordinarily, gamma oscillations occur when people are involved with learning and memory tasks, Dr. Buonanno said. In people with schizophrenia, however, the strength of the gamma oscillations is reduced.

"With schizophrenia, the gamma oscillations are fainter," Dr. Buonanno said. "It’s analogous to tuning in the weak signal of a distant station on your car radio, as opposed to picking up the strong signal of a station that’s nearby."

Dr. Buonanno and his colleagues studied brain sections from the hippocampus, a brain region involved in learning and memory. The hippocampus also is a major source of gamma oscillations.

The researchers first chemically stimulated the brain sections, in effect jump starting them so that they began generating gamma oscillations. After the researchers exposed the sections to Neuregulin-1, the strength of the gamma oscillations increased dramatically.

Like a key fits into a lock, Neuregulin-1 fits into a special site, or receptor, on the surface of brain cells. Specifically, Neuregulin-1 binds to the receptor known as ERB4.

Further tests confirmed the role of Neuregulin-1 in boosting gamma oscillations. The researchers soaked the hippocampus sections in a drug that blocks ERB4. When the researchers added Neuregulin-1, the hippocampus sections did not show an increase in gamma oscillations.

Similarly, the researchers then added Neuregulin-1 to hippocampus sections of mice that were genetically incapable of producing the ERB4 receptor. Once again the animals’ brains failed to show any increase in gamma oscillations.

The researchers chose to study Neuregulin-1 and ERB4 because earlier studies had shown that people with schizophrenia often have alterations in the genes that contain the information needed to make these substances.

"For the first time, we were able to show that Neuregulin-1, which has been genetically implicated in schizophrenia, affects a brain activity that appears to be altered in schizophrenia," Dr. Buonanno said.

In addition, the researchers found that ERB4 receptors were abundant on a particular type of neuron (a specialized cell involved in the transmission of information). Known technically as parvalbumin expressing neurons, these neurons slow the transmission of electrical signals through the brain.

Studies performed at autopsy have found that people with schizophrenia have fewer parvalbumin expressing neurons than do people who do not have schizophrenia. In their study, Dr. Buonanno and his colleagues reported that the mice which were genetically incapable of producing the ERB4 receptor also have fewer parvalbumin expressing neurons than do genetically normal mice.

"Our study has uncovered an interesting lead," Dr. Buonanno said. "Future studies of brain regions rich in ERB4 receptors may yield important information on the nature of schizophrenia."

Dr. Buonanno added that studies of how various drugs affect the ERB4 receptor and parvalbumin expressing neurons may lead to novel drug treatments for schizophrenia.

Other authors of the study were Jorg Neddens and Leqin Yan, also of the NICHD Section on Molecular Neurobiology.


Story Source:

The above story is based on materials provided by NIH/National Institute of Child Health and Human Development. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute of Child Health and Human Development. "Molecular Switch Boosts Brain Activity Associated With Schizophrenia." ScienceDaily. ScienceDaily, 14 August 2008. <www.sciencedaily.com/releases/2008/08/080814125302.htm>.
NIH/National Institute of Child Health and Human Development. (2008, August 14). Molecular Switch Boosts Brain Activity Associated With Schizophrenia. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2008/08/080814125302.htm
NIH/National Institute of Child Health and Human Development. "Molecular Switch Boosts Brain Activity Associated With Schizophrenia." ScienceDaily. www.sciencedaily.com/releases/2008/08/080814125302.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins