Featured Research

from universities, journals, and other organizations

'Cutting By Color': New Imaging Technique For More Precise Cancer Surgery

Date:
August 24, 2008
Source:
American Chemical Society
Summary:
Instead of "paint by number," you might call it "cutting by color": Researchers in Massachusetts now report development and early clinical trials of a new imaging system that highlights cancerous tissue in the body so that surgeons can more easily see and remove diseased tissue with less damage to normal tissue near the tumor. Their research will be presented in August at the American Chemical Society national meeting in Philadelphia.

A futuristic imaging technique could improve cancer surgery by revealing hidden anatomical details. Photo of a pig's hind leg viewed after injection with near-infrared contrast agents and imaging with near-infrared light to highlight lymph flow.
Credit: John V. Frangioni, M.D., Ph.D. Beth Israel Deaconess Medical Center, Boston

Cancer surgeons today operate "blind" with no clear way of determining in real-time whether they have removed all of the diseased tissue, which is the key to successful surgery. Researchers in Massachusetts now report development and early clinical trials of a new imaging system that highlights cancerous tissue in the body so that surgeons can more easily see and remove diseased tissue with less damage to normal tissue near the tumor.

Related Articles


The technique shows particular promise for improving surgery for breast, prostate, and lung cancer, whose tumor boundaries can be difficult to track at advanced stages, they say. Described today at the 236th National Meeting of the American Chemical Society (ACS), the technique can also help cancer surgeons avoid cutting critical structures such as blood vessels and nerves.

"This technique is really the first time that cancer surgeons can see structures that are otherwise invisible, providing true image-guided surgery," says project director John Frangioni, M.D., Ph.D., of Beth Israel Deaconess Medical Center (BIDMC) in Boston and co-director of its Center for Imaging Technology and Molecular Diagnostics. "If we're able to see cancer, we have a chance of curing it."

The system is called FLARE, or Fluorescence-Assisted Resection and Exploration. Under development for the past decade, the portable system consists of a near-infrared (NIR) imaging system, a video monitor, and a computer. "The system has no moving parts, uses LEDs instead of lasers for excitation, makes no contact with the patient, and is sterile," Frangioni says.

The unique system uses special chemical dyes, called NIR fluorophores, that are designed to target specific structures such as cancer cells when the dyes are injected into patients. When exposed to NIR light, which is invisible to the human eye, the dyes or contrast agents light up the cancer cells and are shown on a video monitor. Images of these "glowing" cancer cells are then superimposed over images of the normal surgical field, allowing surgeons to easily see the cancer cells even in a background crowded by blood and other anatomical structures, the researcher says.

Frangioni compares the system to the old color-by-number paint sets. Instead of coloring by numbers, it will provide surgeons with a means of "cutting by color," he says. The computerized technique also gives physicians the power to control multiple viewing angles and different magnification levels through the use of a footswitch.

In preliminary studies, Frangioni and colleagues used the FLARE to successfully visualize organs and body fluids of mice and map the lymph nodes of pigs, all in real-time. The first human clinical trials, expected to begin this summer, involve mapping the lymph nodes of a small group of patients with breast cancer. Broader clinical use of the device could occur within five years, the researchers estimate.

In the future, fluorophores could be developed to highlight nerves and blood vessels in one color while visualizing cancer cells in a different color, allowing multiple structures to be viewed easily and even simultaneously, he says.

"The future of the technology now is really in the chemistry," Frangioni says. "We have to develop agents for specific tumors, nerves or blood vessels we're trying to visualize."

The study is funded primarily through a Bioengineering Research Partnership from the National Cancer Institute of the National Institutes of Health.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "'Cutting By Color': New Imaging Technique For More Precise Cancer Surgery." ScienceDaily. ScienceDaily, 24 August 2008. <www.sciencedaily.com/releases/2008/08/080819160055.htm>.
American Chemical Society. (2008, August 24). 'Cutting By Color': New Imaging Technique For More Precise Cancer Surgery. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2008/08/080819160055.htm
American Chemical Society. "'Cutting By Color': New Imaging Technique For More Precise Cancer Surgery." ScienceDaily. www.sciencedaily.com/releases/2008/08/080819160055.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins