Featured Research

from universities, journals, and other organizations

Dense Tissue Promotes Aggressive Cancers

Date:
August 23, 2008
Source:
Vanderbilt University Medical Center
Summary:
New research may explain why breast cancer tends to be more aggressive in women with denser breast tissue. Breast cancer cells grown in dense, rigid surroundings step up their invasive activities, according to a new article in Current Biology.

New research may explain why breast cancer tends to be more aggressive in women with denser breast tissue.

Breast cancer cells grown in dense, rigid surroundings step up their invasive activities, Vanderbilt-Ingram Cancer Center investigators report in the Sept. 9 issue of Current Biology.

The findings suggest a cellular mechanism for the correlation between human breast tissue density and tumor aggressiveness. Women with increased breast density on mammograms have an increased risk for both developing breast cancer and having breast cancers with invasive characteristics.

This connection between breast density and cancer aggressiveness has begged the question of which comes first. Is the tissue denser because the tumor is more aggressive (and recruits cells that "lay down" more matrix), or is the tumor more aggressive because the tissue is denser?

"Our study shows that if you have a dense, rigid matrix, the cells will be more aggressive and invasive; it's a direct effect," said Alissa Weaver, M.D., Ph.D., assistant professor of Cancer Biology and lead author of the study.

Weaver and colleagues were interested in invadopodia – the finger-like protrusions that a cancer cell uses to drill holes in the extracellular matrix (matrix-degrading enzymes are associated with invadopodia). These structures are believed to be important for cancer invasion.

"If you have enough invadopodia, over time they'll make large holes that cells can move through to invade and metastasize," Weaver said.

Despite the intimate connection between invadopodia and the matrix, very little was known about what role the matrix might play in regulating invadopodia function. Weaver and colleagues started probing this question as part of computational math modeling project through the Vanderbilt Integrative Cancer Biology Center.

They were surprised to find that breast cancer cells cultured on a denser – and thus, more rigid – matrix had a greater number of active invadopodia than breast cancer cells cultured on a less dense matrix.

"We thought that more 'stuff' for the cells to get through was going to make it harder, so we expected to see less matrix degradation, but instead we found this interesting effect where cells actually sense the rigidity and degrade more," Weaver said.

The team examined how cells convert a sense of matrix rigidity into intracellular signals, a process called mechanotransduction.

Proteins that generate contractile forces, such as myosin "motors," are important players in mechanotransduction. Weaver and colleagues confirmed that myosin motors are involved in sparking more degradation by invadopodia in response to a rigid matrix, though the motors themselves are not present in the drilling structures.

The investigators also implicated the activities of two signaling proteins called FAK and p130Cas in the rigidity-induced invadopodia activity. These signaling proteins were present in an activated state in the invadopodia, suggesting that they are important players in this response and may represent targets for anti-invasive therapies.

Weaver said that it's exciting to find a cellular mechanism that could explain why denser breast tissue is correlated with more aggressive tumors and a poorer prognosis for patients.

"The idea that tissue rigidity leads to a more aggressive phenotype had been out there for a while," she said, "but it hadn't actually been tied to matrix degradation, which is thought to be important for metastasis and spread of cells through the body."

Because metastasis is often what makes cancers deadly, new leads on how to block it are critical, she added.

Nelson Alexander, Ph.D., Kevin Branch, Aron Parekh, Ph.D., Emily Clark, Ph.D., and Izuchukwu Iwueke, in the Department of Cancer Biology at Vanderbilt, and Scott Guelcher, Ph.D., in the Department of Chemical Engineering at Vanderbilt, contributed to the studies. The National Institutes of Health and the Vanderbilt University School of Engineering supported the research.


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University Medical Center. "Dense Tissue Promotes Aggressive Cancers." ScienceDaily. ScienceDaily, 23 August 2008. <www.sciencedaily.com/releases/2008/08/080822120138.htm>.
Vanderbilt University Medical Center. (2008, August 23). Dense Tissue Promotes Aggressive Cancers. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2008/08/080822120138.htm
Vanderbilt University Medical Center. "Dense Tissue Promotes Aggressive Cancers." ScienceDaily. www.sciencedaily.com/releases/2008/08/080822120138.htm (accessed September 19, 2014).

Share This



More Health & Medicine News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com
What HealthKit Bug Means For Your iOS Fitness Apps

What HealthKit Bug Means For Your iOS Fitness Apps

Newsy (Sep. 18, 2014) Apple has delayed the launch of the HealthKit app platform, citing a bug. Video provided by Newsy
Powered by NewsLook.com
U.S. Food Makers Surpass Calorie-Cutting Pledge

U.S. Food Makers Surpass Calorie-Cutting Pledge

Newsy (Sep. 18, 2014) Sixteen large food and beverage companies in the United States that committed to cut calories in their products far surpassed their target. Video provided by Newsy
Powered by NewsLook.com
Residents Vaccinated as Haiti Fights Cholera Epidemic

Residents Vaccinated as Haiti Fights Cholera Epidemic

AFP (Sep. 18, 2014) Haitians receive the second dose of the vaccine against cholera as part of the UN's vaccination campaign. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins