Featured Research

from universities, journals, and other organizations

Multitasking Can Be Efficient At Certain Optimal Times

Date:
September 4, 2008
Source:
University of New Hampshire
Summary:
In today's fast-paced world, multitasking has become an increasingly necessary part of our daily routine. Unfortunately, multitasking also is notoriously inefficient. However, a new brain imaging study led by a cognitive neuroscientist finds that there are optimal times when we are better suited to multitask.

In today's fast-paced world, multitasking has become an increasingly necessary part of our daily routine. Unfortunately, multitasking also is notoriously inefficient. However, a new brain imaging study led by a cognitive neuroscientist at the University of New Hampshire finds that there are optimal times when we are better suited to multitask.

In the study, Andrew Leber, assistant professor of psychology at UNH, explains how the brain can act as crystal ball to predict when people are efficient multitaskers.

"We typically sacrifice efficiency when we multitask. However, there are times when we're quite good at it. Unfortunately, not much has been known about how to predict when these periods of time will occur," Leber said.

While having the study participants multitask, Leber and his colleagues at Yale University monitored their brain activity using functional magnetic resonance imaging (fMRI). The research confirmed that multitasking is, on average, inefficient. However, the brain scans allowed the researchers to predict when people would be poor multitaskers and optimal multitaskers.

Most dramatically, the changes in performance were preceded by changes in the participants' brain activity patterns. Higher levels of activity in brain regions such as the basal ganglia, anterior cingulate cortex, prefrontal cortex, and parietal cortex corresponded to better multitasking performance.

"What is so striking about this result is that brain activity predicted multitasking performance before participants even knew whether they would be asked to switch or repeat tasks," Leber said.

Being able to predict when people are in optimal multitasking states raises tantalizing prospects for maximizing productivity in our daily lives, according to Leber. Ideally, we should reserve task juggling for known periods of optimal multitasking while doing repetitive tasks during known periods of poor multitasking.

Yet, while the brain imaging results reflect a critical step in helping us to better schedule our daily routine, they don't provide a truly practical solution quite yet. "Obviously, the average person can't bring an fMRI scanner to work," Leber said. "It may take more time before our research translates to real-world benefits for each of us."

Nevertheless, he believes that the current study represents a promising start.

"The fact that we are able to so rapidly switch from one task to another is no accident of nature, as it reflects an enhanced capacity to flexibly interact with our environment. And, it's to our benefit to exercise this remarkable skill from time to time, although the key might be to keep it in moderation," he said.

The research also may inform scientists' understanding of neurological disorders, such as Parkinson's disease, which is marked by degeneration of the basal ganglia. While it is commonly known that Parkinson's patients experience deficits in controlling movement, multitasking also is adversely affected.

"We've known that multitasking suffers when the physical makeup of the basal ganglia degenerates over time, as in Parkinson's disease," Leber said. "However, the current study shows that even in healthy adults, short-term changes in the basal ganglia also impact multitasking."

This observation opens new potential avenues in studying normal brain functioning to help provide a more complete picture of the disordered functioning in Parkinson's disease.

Leber's co-authors on the study were Marvin Chun, professor of psychology at Yale University, and Nicholas Turk-Browne, a graduate student at Yale. The research was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of New Hampshire. Note: Materials may be edited for content and length.


Journal Reference:

  1. Leber et al. Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proceedings of the National Academy of Sciences, 2008; DOI: 10.1073/pnas.0805423105

Cite This Page:

University of New Hampshire. "Multitasking Can Be Efficient At Certain Optimal Times." ScienceDaily. ScienceDaily, 4 September 2008. <www.sciencedaily.com/releases/2008/09/080902104856.htm>.
University of New Hampshire. (2008, September 4). Multitasking Can Be Efficient At Certain Optimal Times. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2008/09/080902104856.htm
University of New Hampshire. "Multitasking Can Be Efficient At Certain Optimal Times." ScienceDaily. www.sciencedaily.com/releases/2008/09/080902104856.htm (accessed April 19, 2014).

Share This



More Mind & Brain News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins