Featured Research

from universities, journals, and other organizations

Magnetic Resonance And Radar Technology United In One Prototype: New Process To Improve Diagnostic Images

Date:
September 10, 2008
Source:
Physikalisch-Technische Bundesanstalt (PTB)
Summary:
Don't move a muscle! Patients certainly have to take this request to heart if they have to lie in a magnetic resonance tomography (MRT) device – otherwise movement artifacts result on the images produced by the MRT. With the aid of an ultra-broadband radar device, these vital movements during measurement can be taken into consideration and the MRI measurements can be corrected.

Don't move a muscle! Patients certainly have to take this request to heart if they have to lie in a magnetic resonance tomography (MRT) device – otherwise movement artifacts result on the images produced by the MRT.

Related Articles


These are distorting elements in the image which show the movement of the body, but not the body itself. Movement is a disturbing factor which leads to blurring and "ghosting" in the MRT image.

Patients, however, have to have not only a lot of patience but also endurance, as a magnetic resonance imaging (MRI) test can take up to 30 minutes. But even if the patient does not move once during the whole time, movement artifacts cannot be ruled out. Some parts of the body are always moving – for example the lungs expand when you breathe in and the chest goes up and down. The movement of the heart muscle also leads to distortions in the image – as it changes shape during the pumping cycle.

With the aid of an ultra-broadband radar device, these vital movements during measurement can be taken into consideration and the MRI measurements can be corrected. The joint use of both technologies is being tested with the aid of a prototype developed at the Physikalisch Technische Bundesanstalt (PTB, Germany's national metrology institute), which arose in co-operation with Ilmenau University of Technology. This project is funded by the Deutsche Forschungsgemeinschaft (DFG, the German Research Foundation) in the frame of a priority programme running for six years.

The interdisciplinary research project ultraMEDIS within the DFG priority programme 1202 "Ultra wide-band radio technologies for communication, localisation and sensor technology" is aimed at using ultra-wideband (UWB) radar techniques for the detection of tumours, as well as for navigation technology in magnetic resonance (MR) imaging.

Ultra-wideband electromagnetic pulses (spectral bandwidth up to 10 GHz) generated by an UWB radar and transmitted by an antenna are able to probe the human body with low integral power (~ 1 mW), because electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. The receiving antenna detects the reflected signals coming from different depths of the body.

The high temporal and spatial resolution of radar sensors, their compatibility to existing narrow-band systems, the low integral power of the probing signals and their ability to penetrate objects are thereby exploited. Especially the latter one is the very property which makes UWB radar so attractive for medical applications.

At PTB, a demonstrator for the evaluation of the principal feasibility of an MR-UWB combination has been realised [1, 2]. With an MR-compatible UWB radar, the characteristic landmarks of the heart muscle during breathing could be followed without disturbing the actual MR measurement. Thus both, a real-time adjustment of the MR frequency according to the current position of the heart or a retrospective position correction of the MR data could be carried out.

The Project is carried out in cooperation with the Technical University of Ilmenau and with medical partners from University of Jena, whose special attention lies on tumor detection.


Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt (PTB). Note: Materials may be edited for content and length.


Cite This Page:

Physikalisch-Technische Bundesanstalt (PTB). "Magnetic Resonance And Radar Technology United In One Prototype: New Process To Improve Diagnostic Images." ScienceDaily. ScienceDaily, 10 September 2008. <www.sciencedaily.com/releases/2008/09/080909102226.htm>.
Physikalisch-Technische Bundesanstalt (PTB). (2008, September 10). Magnetic Resonance And Radar Technology United In One Prototype: New Process To Improve Diagnostic Images. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2008/09/080909102226.htm
Physikalisch-Technische Bundesanstalt (PTB). "Magnetic Resonance And Radar Technology United In One Prototype: New Process To Improve Diagnostic Images." ScienceDaily. www.sciencedaily.com/releases/2008/09/080909102226.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins