Featured Research

from universities, journals, and other organizations

Magnetic Resonance And Radar Technology United In One Prototype: New Process To Improve Diagnostic Images

Date:
September 10, 2008
Source:
Physikalisch-Technische Bundesanstalt (PTB)
Summary:
Don't move a muscle! Patients certainly have to take this request to heart if they have to lie in a magnetic resonance tomography (MRT) device – otherwise movement artifacts result on the images produced by the MRT. With the aid of an ultra-broadband radar device, these vital movements during measurement can be taken into consideration and the MRI measurements can be corrected.

Don't move a muscle! Patients certainly have to take this request to heart if they have to lie in a magnetic resonance tomography (MRT) device – otherwise movement artifacts result on the images produced by the MRT.

Related Articles


These are distorting elements in the image which show the movement of the body, but not the body itself. Movement is a disturbing factor which leads to blurring and "ghosting" in the MRT image.

Patients, however, have to have not only a lot of patience but also endurance, as a magnetic resonance imaging (MRI) test can take up to 30 minutes. But even if the patient does not move once during the whole time, movement artifacts cannot be ruled out. Some parts of the body are always moving – for example the lungs expand when you breathe in and the chest goes up and down. The movement of the heart muscle also leads to distortions in the image – as it changes shape during the pumping cycle.

With the aid of an ultra-broadband radar device, these vital movements during measurement can be taken into consideration and the MRI measurements can be corrected. The joint use of both technologies is being tested with the aid of a prototype developed at the Physikalisch Technische Bundesanstalt (PTB, Germany's national metrology institute), which arose in co-operation with Ilmenau University of Technology. This project is funded by the Deutsche Forschungsgemeinschaft (DFG, the German Research Foundation) in the frame of a priority programme running for six years.

The interdisciplinary research project ultraMEDIS within the DFG priority programme 1202 "Ultra wide-band radio technologies for communication, localisation and sensor technology" is aimed at using ultra-wideband (UWB) radar techniques for the detection of tumours, as well as for navigation technology in magnetic resonance (MR) imaging.

Ultra-wideband electromagnetic pulses (spectral bandwidth up to 10 GHz) generated by an UWB radar and transmitted by an antenna are able to probe the human body with low integral power (~ 1 mW), because electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. The receiving antenna detects the reflected signals coming from different depths of the body.

The high temporal and spatial resolution of radar sensors, their compatibility to existing narrow-band systems, the low integral power of the probing signals and their ability to penetrate objects are thereby exploited. Especially the latter one is the very property which makes UWB radar so attractive for medical applications.

At PTB, a demonstrator for the evaluation of the principal feasibility of an MR-UWB combination has been realised [1, 2]. With an MR-compatible UWB radar, the characteristic landmarks of the heart muscle during breathing could be followed without disturbing the actual MR measurement. Thus both, a real-time adjustment of the MR frequency according to the current position of the heart or a retrospective position correction of the MR data could be carried out.

The Project is carried out in cooperation with the Technical University of Ilmenau and with medical partners from University of Jena, whose special attention lies on tumor detection.


Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt (PTB). Note: Materials may be edited for content and length.


Cite This Page:

Physikalisch-Technische Bundesanstalt (PTB). "Magnetic Resonance And Radar Technology United In One Prototype: New Process To Improve Diagnostic Images." ScienceDaily. ScienceDaily, 10 September 2008. <www.sciencedaily.com/releases/2008/09/080909102226.htm>.
Physikalisch-Technische Bundesanstalt (PTB). (2008, September 10). Magnetic Resonance And Radar Technology United In One Prototype: New Process To Improve Diagnostic Images. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2008/09/080909102226.htm
Physikalisch-Technische Bundesanstalt (PTB). "Magnetic Resonance And Radar Technology United In One Prototype: New Process To Improve Diagnostic Images." ScienceDaily. www.sciencedaily.com/releases/2008/09/080909102226.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins