Featured Research

from universities, journals, and other organizations

Beautiful Death: Halos Of Planetary Nebulae Revealed

Date:
September 12, 2008
Source:
Calar Alto Observatory-CAHA
Summary:
Stars without enough mass to turn into exploding supernovae end their lives blowing away most of their mass in a non-explosive, but intense stellar wind. Only a hot stellar core remains in the form of a white dwarf; the rest of the star is dispersed into the interstellar medium, enriching it with chemically processed elements, such as carbon, that is found in all living organisms on Earth. These elements were cooked in the stellar furnace during a stellar life span covering billions of years. The high-energy radiation from the hot white dwarf makes the blown gas to shine for a short period of time, and the result is one of the most colourful and beautiful astronomical objects: a planetary nebula.

IC 3568.
Credit: Howard Bond (STScI), NASA

Stars without enough mass to turn into exploding supernovae end their lives blowing away most of their mass in a non-explosive, but intense stellar wind. Only a hot stellar core remains in the form of a white dwarf; the rest of the star is dispersed into the interstellar medium, enriching it with chemically processed elements, such as carbon, that is found in all living organisms on Earth.

These elements were cooked in the stellar furnace during a stellar life span covering billions of years. The high-energy radiation from the hot white dwarf makes the blown gas to shine for a short period of time, and the result is one of the most colourful and beautiful astronomical objects: a planetary nebula.

The complex history of mass loss

The events which lead to the formation of a planetary nebula develop in two phases that finally induce a structure composed of a denser, inner region –the planetary nebula itself– and an external fainter halo, that consists of the ionized stellar wind. All together, the blowing of this material is performed in a relatively short time, in astronomical terms, and the planetary nebula is visible only during a few thousand years. For this reason there are not many of these objects available for study.

External halos of planetary nebulae are faint and difficult to study, but they can provide a wealth of information on the physical properties of the final mass loss stage of the dying star. Although there is progress in understanding both stellar evolution and mass loss theoretically, observational details of, in particular, the last phase of the mass loss process have remained obscure. Classical astronomical spectrographs and other instruments are able to study only a few points of such faint and extended objects, making the analysis of these halos an extremely cumbersome, or even impossible task.

Integral field spectroscopy to the rescue

Through the new technique of integral field spectroscopy it is possible to obtain hundreds of spectra across a relatively large area of the sky, and this opens new prospects for the analysis of extended objects, such as planetary nebulae. Calar Alto Observatory has one of the world's best integral field spectrographs, PMAS (Potsdam Multi-Aperture Spectrophotometer), attached to its 3.5 m telescope.

In a research article, that was just published in the journal Astronomy and Astrophysics, a research team from the Astrophysical Institute in Potsdam, lead by C. Sandin, has used PMAS to study the two-dimensional structure of a selected set of five planetary nebulae in our Galaxy: the Blue Snowball Nebula (NGC 7662), M2-2, IC 3568, the Blinking Planetary Nebula (NGC 6826) and the Owl Nebula (NGC 3587).

The halos of planetary nebulae revealed

For four of these objects the research team derived a temperature structure, which extended all the way from the central star and out into the halo, and found, in three cases, that the temperature increases steeply in the inner halo. According to Sandin, "The appearance of such hot halos can be readily explained as a transient phenomenon which occurs when the halo is being ionized." Another remarkable result of this study is that it has been possible, for the first time, to measure the mass loss history of the final evolution of the stars which produced the planetary nebulae. Sandin says that "In comparison to other methods which measure mass loss rates, our estimates are made directly on the gas component of the stellar wind." The results allow important insights on how mass is lost in time, and the researchers found that "the mass loss rate increases by a factor of about 4-7 during the final, say, 10 000 years of mass loss."

The research team plans to continue with this study of the final evolutionary phases of low mass stars, and have observed planetary nebulae in the Magellanic Clouds. As the authors argue "on the theoretical side the results of our studies should provide a challenging basis for further improvement of models of stellar winds."


Story Source:

The above story is based on materials provided by Calar Alto Observatory-CAHA. Note: Materials may be edited for content and length.


Cite This Page:

Calar Alto Observatory-CAHA. "Beautiful Death: Halos Of Planetary Nebulae Revealed." ScienceDaily. ScienceDaily, 12 September 2008. <www.sciencedaily.com/releases/2008/09/080911142411.htm>.
Calar Alto Observatory-CAHA. (2008, September 12). Beautiful Death: Halos Of Planetary Nebulae Revealed. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/09/080911142411.htm
Calar Alto Observatory-CAHA. "Beautiful Death: Halos Of Planetary Nebulae Revealed." ScienceDaily. www.sciencedaily.com/releases/2008/09/080911142411.htm (accessed April 18, 2014).

Share This



More Space & Time News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Baby Moon 'Peggy' Spotted In Saturn's Rings

New Baby Moon 'Peggy' Spotted In Saturn's Rings

Newsy (Apr. 15, 2014) A bump in the rings could be a half-mile-wide miniature moon. It was found by accident in Cassini probe images. Video provided by Newsy
Powered by NewsLook.com
Americas Glimpse Total Lunar Eclipse

Americas Glimpse Total Lunar Eclipse

AFP (Apr. 15, 2014) A total lunar eclipse, the first since December 2011, took place early Tuesday morning with the Americas getting the best glimpse. Duration: 1:19 Video provided by AFP
Powered by NewsLook.com
NASA Showcases Lunar Eclipse

NASA Showcases Lunar Eclipse

AP (Apr. 15, 2014) Star gazers in parts of North and South America got a rare treat early Tuesday morning - a total eclipse of the moon. (April 15) Video provided by AP
Powered by NewsLook.com
Spacecrafts Could Use Urine As Fuel Source

Spacecrafts Could Use Urine As Fuel Source

Newsy (Apr. 15, 2014) New research says the urea from urine could be recycled for fuel. Urea is filtered out of wastewater when making drinking water. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins