Featured Research

from universities, journals, and other organizations

Simulations Help Explain Fast Water Transport In Nanotubes

Date:
September 22, 2008
Source:
University of Illinois at Urbana-Champaign
Summary:
By discovering the physical mechanism behind the rapid transport of water in carbon nanotubes, scientists have moved a step closer to ultra-efficient, next-generation nanofluidic devices for drug delivery, water purification and nanomanufacturing.

Narayana R. Aluru, professor of mechanical science and engineering, left, and doctoral student Sony Joseph have discovered the physical mechanism behind the rapid transport of water in carbon nanotubes. Image in background shows the trajectory of water molecules in a carbon nanotube moving in the direction of their orientations due to rotation-translation coupling.
Credit: Photo by L. Brian Stauffer

By discovering the physical mechanism behind the rapid transport of water in carbon nanotubes, scientists at the University of Illinois have moved a step closer to ultra-efficient, next-generation nanofluidic devices for drug delivery, water purification and nano-manufacturing.

Related Articles


"Extraordinarily fast transport of water in carbon nanotubes has generally been attributed to the smoothness of the nanotube walls and their hydrophobic, or water-hating surfaces," said Narayana R. Aluru, a Willett Faculty Scholar and a professor of mechanical science and engineering at the U. of I.

"We can now show that the fast transport can be enhanced by orienting water molecules in a nanotube," Aluru said. "Orientation can give rise to a coupling between the water molecules' rotational and translational motions, resulting in a helical, screw-type motion through the nanotube," Aluru said.

Using molecular dynamics simulations, Aluru and graduate student Sony Joseph examined the physical mechanism behind orientation-driven rapid transport. For the simulations, the system consisted of water molecules in a 9.83 nanometer long nanotube, connected to a bath at each end. Nanotubes of two diameters (0.78 nanometers and 1.25 nanometers) were used. Aluru and Joseph reported their findings in the journal Physical Review Letters.

For very small nanotubes, water molecules fill the nanotube in single-file fashion, and orient in one direction as a result of confinement effects. This orientation produces water transport in one direction. However, the water molecules can flip their orientations collectively at intervals, reversing the flow and resulting in no net transport.

In bigger nanotubes, water molecules are not oriented in any particular direction, again resulting in no transport.

Water is a polar molecule consisting of two hydrogen atoms and one oxygen atom. Although its net charge is zero, the molecule has a positive side (hydrogen) and a negative side (oxygen). This polarity causes the molecule to orient in a particular direction when in the presence of an electric field.

Creating and maintaining that orientation, either by directly applying an electric field or by attaching chemical functional groups at the ends of the nanotubes, produces rapid transport, the researchers report.

"The molecular mechanism governing the relationship between orientation and flow had not been known," Aluru said. "The coupling occurs between the rotation of one molecule and the translation of its neighboring molecules. This coupling moves water through the nanotube in a helical, screw-like fashion."

In addition to explaining recent experimental results obtained by other groups, the researchers' findings also describe a physical mechanism that could be used to pump water through nanotube membranes in next-generation nanofluidic devices.

Funding was provided by the National Science Foundation and the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Simulations Help Explain Fast Water Transport In Nanotubes." ScienceDaily. ScienceDaily, 22 September 2008. <www.sciencedaily.com/releases/2008/09/080916155056.htm>.
University of Illinois at Urbana-Champaign. (2008, September 22). Simulations Help Explain Fast Water Transport In Nanotubes. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2008/09/080916155056.htm
University of Illinois at Urbana-Champaign. "Simulations Help Explain Fast Water Transport In Nanotubes." ScienceDaily. www.sciencedaily.com/releases/2008/09/080916155056.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins