Featured Research

from universities, journals, and other organizations

Sole Use Of Impaired Limb Improves Recovery In Spinal Cord Injury

Date:
September 20, 2008
Source:
Society for Neuroscience
Summary:
A new study finds that following minor spinal cord injury, rats that had to use impaired limbs showed full recovery due to increased growth of healthy nerve fibers and the formation of new nerve cell connections. These findings help explain how physical therapy advances recovery, and support the use of rehabilitation therapies that specifically target impaired limbs in people with brain and spinal cord injuries.

A new study finds that following minor spinal cord injury, rats that had to use impaired limbs showed full recovery due to increased growth of healthy nerve fibers and the formation of new nerve cell connections.

Related Articles


Published in the September 17 issue of The Journal of Neuroscience, these findings help explain how physical therapy advances recovery, and support the use of rehabilitation therapies that specifically target impaired limbs in people with brain and spinal cord injuries.

"After brain and spinal cord injuries, exercise-based physical therapy is the primary rehabilitative strategy in use today," said Stephen Strittmatter, MD, PhD, at Yale University School of Medicine, an expert unaffiliated with the study. "These therapies are so beneficial to patients, but the anatomical and molecular bases of improvement have not been clear," Strittmatter said.

The researchers, led by Irin Maier and senior researcher Martin Schwab, PhD at the University of Zurich and the Swiss Federal Institute of Technology, tested rats with minor surgical injuries to the spinal cord that impaired the use of one forelimb. Slings were placed on the rats that restricted the use of either the injured or uninjured limb. After three weeks, researchers removed the slings and tested the rats on an elevated horizontal ladder.

Rats that relied on their impaired limb because use of their unimpaired limb was restricted showed complete functional recovery: they negotiated the ladder as well as rats that had not been injured. In contrast, rats that had not worn slings and those that wore slings restricting the use of the injured limb performed poorly, showing difficulty grasping and negotiating the horizontal rungs of the ladder.

In all of the rats, healthy nerve fibers, or axons, grew into injured regions of the spinal cord. However, rats that relied on their injured limb showed the most extensive nerve growth. "The study shows that when the axons that remain after a spinal cord injury are more active — because the animal is forced to use them — they grow more. This seems to help the animal recover more control of their movements," said John Martin, PhD, at Columbia University, an expert unaffiliated with the study.

These nerve fibers formed more connections, or synapses, in rats relying on their injured limb compared with those relying on their uninjured limb. This finding suggests that forced limb use encourages healthy nerve cells to form new synapses with cells affected by spinal cord injury, perhaps rerouting and rewiring damaged spinal cord circuits that are important for movement.

Using gene chip technology, the researchers found that forced limb use turned on or turned off genes known to be involved in nerve fiber growth and synapse formation in the spinal cord. Knowing which genes are involved in recovery from spinal cord injury may help researchers develop new drug treatments.

"This study shows that a behavioral approach is remarkably effective in promoting both axon growth and recovery after injury," said Martin. "We know that physical therapy is effective after brain and spinal injuries. But these new results suggest that a more aggressive therapy, in which the unimpaired limb is prevented from use and the impaired limb is forced to be used, might lead to new neural connections," he said.

The research was supported by the Swiss National Science Foundation and the Christopher and Dana Reeve Foundation.


Story Source:

The above story is based on materials provided by Society for Neuroscience. Note: Materials may be edited for content and length.


Cite This Page:

Society for Neuroscience. "Sole Use Of Impaired Limb Improves Recovery In Spinal Cord Injury." ScienceDaily. ScienceDaily, 20 September 2008. <www.sciencedaily.com/releases/2008/09/080916215118.htm>.
Society for Neuroscience. (2008, September 20). Sole Use Of Impaired Limb Improves Recovery In Spinal Cord Injury. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2008/09/080916215118.htm
Society for Neuroscience. "Sole Use Of Impaired Limb Improves Recovery In Spinal Cord Injury." ScienceDaily. www.sciencedaily.com/releases/2008/09/080916215118.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins