Featured Research

from universities, journals, and other organizations

Comet Dust Reveals Unexpected Mixing Of Solar System

Date:
September 23, 2008
Source:
University of Wisconsin-Madison
Summary:
Chemical clues from a comet's halo are challenging common views about the history and evolution of the solar system and showing it may be more mixed-up than previously thought.

In a new analysis of rare comet dust samples, a team of researchers including Takayuki Ushikubo, Noriko Kita, and John Valley of the University of Wisconsin-Madison has identified unexpected chemical and isotope signatures that challenge existing views about the formation and history of the solar system. Tiny crystals from the Wild 2 comet, captured by NASA's Stardust mission, resemble fragments of the molten mineral droplets called chondrules, shown here, found in primitive meteorites. That similar flash-heated particles were found in Wild 2, a comet formed in the icy fringes of outer space, suggests that solid materials may have been transported outward in the young solar system.
Credit: Photo by Noriko Kita

Chemical clues from a comet's halo are challenging common views about the history and evolution of the solar system and showing it may be more mixed-up than previously thought.

A new analysis of dust from the comet Wild 2, collected in 2004 by NASA's Stardust mission, has revealed an oxygen isotope signature that suggests an unexpected mingling of rocky material between the center and edges of the solar system. Despite the comet's birth in the icy reaches of outer space beyond Pluto, tiny crystals collected from its halo appear to have been forged in the hotter interior, much closer to the sun.

The result, reported in the Sept. 19 issue of the journal Science by researchers from Japan, NASA and the University of Wisconsin-Madison, counters the idea that the material that formed the solar system billions of years ago has remained trapped in orbits around the sun. Instead, the new study suggests that cosmic material from asteroid belts between Mars and Jupiter can migrate outward in the solar system and mix with the more primitive materials found at the fringes.

"Observations from this sample are changing our previous thinking and expectations about how the solar system formed," says UW-Madison geologist Noriko Kita, an author of the paper.

The Stardust mission captured Wild 2 dust in hopes of characterizing the raw materials from which our solar system coalesced. Since the comet formed more than 4 billion years ago from the same primitive source materials, its current orbit between Mars and Jupiter affords a rare opportunity to sample material from the farthest reaches of the solar system and dating back to the early days of the universe. These samples, which reached Earth in early 2006, are the first solid samples returned from space since Apollo.

"They were originally hoping to find the raw material that pre-dated the solar system," explains Kita. "However, we found many crystalline objects that resemble flash-heated particles found in meteorites from asteroids."

In the new study, scientists led by Tomoki Nakamura, a professor at Kyushu University in Japan, analyzed oxygen isotope compositions of three crystals from the comet's halo to better understand their origins. He and UW-Madison scientist Takayuki Ushikubo analyzed the tiny grains — the largest of which is about one-thousandth of an inch across — with a unique ion microprobe in the Wisconsin Secondary Ion Mass Spectrometer (Wisc-SIMS) laboratory, the most advanced instrument of its kind in the world.

To their surprise, they found oxygen isotope ratios in the comet crystals that are similar to asteroids and even the sun itself. Since these samples more closely resemble meteorites than the primitive, low-temperature materials expected in the outer reaches of the solar system, their analysis suggests that heat-processed particles may have been transported outward in the young solar system.

"This really complicates our simple view of the early solar system," says Michael Zolensky, a NASA cosmic mineralogist at the Johnson Space Center in Houston.

"Even though the comet itself came from way out past Pluto, there's a much more complicated history of migration patterns within the solar system and the material originally may have formed much closer to Earth," says UW-Madison geology professor John Valley. "These findings are causing a revision of theories of the history of the solar system."

The research was supported by the Japan Society for the Promotion of Science and the NASA Stardust Sample Analysis and Cosmochemistry Programs. The Wisc-SIMS facility is partly supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Comet Dust Reveals Unexpected Mixing Of Solar System." ScienceDaily. ScienceDaily, 23 September 2008. <www.sciencedaily.com/releases/2008/09/080918170408.htm>.
University of Wisconsin-Madison. (2008, September 23). Comet Dust Reveals Unexpected Mixing Of Solar System. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2008/09/080918170408.htm
University of Wisconsin-Madison. "Comet Dust Reveals Unexpected Mixing Of Solar System." ScienceDaily. www.sciencedaily.com/releases/2008/09/080918170408.htm (accessed April 23, 2014).

Share This



More Space & Time News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Nasa Gives You An Excuse to Post a Selfie on Earth Day

Nasa Gives You An Excuse to Post a Selfie on Earth Day

TheStreet (Apr. 22, 2014) NASA is inviting all social media users to take a selfie of themselves alongside nature and to post it to Twitter, Facebook, Flickr, Instagram, or Google Plus with the hashtag #globalselfie. NASA's goal is to crowd-source a collection of snapshots of the earth, ground-up, that will be used to create one "unique mosaic of the Blue Marble." This image will be available to all in May. Since this is probably one of the few times posting a selfie to Twitter won't be embarrassing, we suggest you give it a go for a good cause. Video provided by TheStreet
Powered by NewsLook.com
SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Raw: Easter Morning Delivery for Space Station

Raw: Easter Morning Delivery for Space Station

AP (Apr. 20, 2014) Space station astronauts got a special Easter treat: a cargo ship full of supplies. The SpaceX company's cargo ship, Dragon, spent two days chasing the International Space Station following its launch from Cape Canaveral. (April 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins