Featured Research

from universities, journals, and other organizations

Key Advance In Treating Spinal Cord Injuries Found In Manipulating Stem Cells

Date:
September 19, 2008
Source:
University of Rochester Medical Center
Summary:
Manipulating stem cells prior to transplantation may hold the key to overcoming a critical obstacle to using stem cell technology to repair spinal cord injuries, scientists have shown.

Researchers in Rochester, N.Y., and Colorado have shown that manipulating stem cells prior to transplantation may hold the key to overcoming a critical obstacle to using stem cell technology to repair spinal cord injuries.

Related Articles


Research from a team of scientists from the University of Rochester Medical Center and the University of Colorado Denver School of Medicine, published today in the online Journal of Biology, may lead to improved spinal cord repair methods that pave the way for victims of paralysis to recover the use of their bodies without the risk of transplant-induced pain syndromes.

The research focuses on a major support cell in the central nervous system called astrocytes. When nerve fibers are injured in the spinal cord, the severed ends of the nerve fibers fail to regenerate and reconnect with the nervous system circuitry beyond the site of the injury. During early development, astrocytes are highly supportive of nerve fiber growth, and scientists believe that if properly directed, these cells could play a key role in regenerating damaged nerves in the spinal cord.

The Rochester team – which consists of biomedical geneticists Chris Proschel, Ph.D., Margot Mayer-Proschel, Ph.D., and Mark Noble, Ph.D. – are pioneers in manipulating stem cells to generate nervous system cells that can be used for therapeutic treatments. Rather than transplanting naοve stem cells, the team has adopted an approach of pre-differentiating stem cells into better defined populations of brain cells. These are then selected for their ability to promote recovery. Here glial restricted precursor (GRP) cells – a population of stem cells that can give rise to several different types of brain cell – were induced to make two different astrocyte sub-types using different growth factors that promote cell formation during normal development. Although these astrocytes are made from the same stem cell population, they apparently have very distinct characteristics and functions

"These studies are particularly exciting in addressing two of the most significant challenges to the field of stem cell medicine – defining the optimal cell for repair and identifying means by which inadequately characterized stem cell approaches may actually cause harm," said Noble, who is also co-director of the New State Center of Research Excellence in Spinal Cord Injury, one of the primary funders of the research.

The research team in Colorado, which consisted of Stephen Davies, Ph.D. and Jeannette Davies, Ph.D., transplanted the two types of astrocytes into the injured spinal cords of rats and found dramatically different outcomes. One type of astrocyte was remarkably effective at promoting nerve regeneration and functional recovery, with transplanted animals showing very high levels of new cell growth and survival, as well as recovery of limb function. However, the other type of astrocyte not only failed to promote nerve fiber regeneration or functional recovery but also caused neuropathic pain, a severe side effect that was not seen in rats treated with the beneficial astrocytes. Moreover, transplantation of the precursor cells themselves, without first turning them into astrocytes, also caused pain syndromes without promoting regeneration.

"To our knowledge, this is the first time that two distinct sub-types of astrocytic support cells generated from a common stem cell-like precursor have been shown to have robustly different effects when transplanted into the injured adult nervous system," said Mayer-Proschel.

"It has long been a concern that therapies that promote growth of nerve fibers in the injured spinal cord would also cause sprouting in pain circuits," said Stephen Davies. "However by using the right astrocytes to repair spinal cord injuries we can have all the gains without the pain, while these other cell types appear to provide the opposite – pain but no gain."

"These results emphasize the importance of astrocytes in controlling the outcome of neurological disease processes," said Proschel. "In addition, because transplants of undifferentiated stem cells harbor the risk of making deleterious astrocytes, it is important to understand their properties and how they might form. By being able to study different types of astrocytes derived from a common neural precursor, we are now underway to finding means of preventing the formation of the deleterious astrocyte type in the first place."

The research teams in Denver and Rochester consider the dramatically dissimilar outcomes between the different astrocyte transplants a development that can change the way stem cell technologies are used to repair spinal cord injuries. To that end, the researchers are in the process of developing a safe, efficient and cost-effective way to use this approach to better define the optimal human astrocytes with an eye toward use for clinical trials.

Also participating in this research was Ningzhe Zhang, Ph.D., with the University of Rochester Department of Biomedical Genetics. In addition to the New York State Spinal Injury Research Board, this research was supported by the Lone Star Foundation and donations from private individuals.


Story Source:

The above story is based on materials provided by University of Rochester Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Davies et al. Transplanted astrocytes derived from BMP or CNTF treated glial restricted precursors have opposite effects on recovery and allodynia after spinal cord injury. Journal of Biology, 2008; 7 (7): 24 DOI: 10.1186/jbiol85

Cite This Page:

University of Rochester Medical Center. "Key Advance In Treating Spinal Cord Injuries Found In Manipulating Stem Cells." ScienceDaily. ScienceDaily, 19 September 2008. <www.sciencedaily.com/releases/2008/09/080918192939.htm>.
University of Rochester Medical Center. (2008, September 19). Key Advance In Treating Spinal Cord Injuries Found In Manipulating Stem Cells. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2008/09/080918192939.htm
University of Rochester Medical Center. "Key Advance In Treating Spinal Cord Injuries Found In Manipulating Stem Cells." ScienceDaily. www.sciencedaily.com/releases/2008/09/080918192939.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins