Featured Research

from universities, journals, and other organizations

Unlocking The Secret Of The Kondo Effect

Date:
September 22, 2008
Source:
University College London
Summary:
Scientists have forged a breakthrough in understanding an intriguing phenomenon in fundamental physics: the Kondo effect.

A team of scientists including researchers from the London Centre for Nanotechnology at UCL (University College London) and the IBM Almaden Research Center has forged a breakthrough in understanding an intriguing phenomenon in fundamental physics: the Kondo effect.

Related Articles


The Kondo effect, one of the few examples in physics where many particles collectively behave as one object (a single quantum-mechanical body), has intrigued scientists around the world for decades. When a single magnetic atom is located inside a metal, the free electrons of the metal ‘screen’ the atom. That way, a cloud of many electrons around the atom becomes magnetized.

Sometimes, if the metal is cooled down to very low temperatures, the atomic spin enters a so-called ‘quantum superposition’ state. In this state its north-pole points in two opposite directions at the same time. As a result, the entire electron cloud around the spin will also be simultaneously magnetized in two directions.

Now, using a technique that was developed by the same team in 2007, the researchers have shown that it is possible to predict when the Kondo effect will occur – and to understand why. The key turns out to be in the geometry of a magnetic atom’s immediate surroundings. By carefully studying how this geometry influences the magnetic moment (or “spin”) of the atom, the emergence of the Kondo effect can now be predicted and understood.

Dr. Cyrus Hirjibehedin, a member of the IBM team who is now a Lecturer at UCL (University College London) and a part of the academic staff of the LCN, said: “This result represents a major advance in our understanding of this fundamental physical phenomenon and could have important consequences for future nanoscale magnetic devices.”

The findings are reported online September 22 in the scientific journal Nature Physics.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Otte et al. The role of magnetic anisotropy in the Kondo effect. Nature Physics, 2008; DOI: 10.1038/nphys1072

Cite This Page:

University College London. "Unlocking The Secret Of The Kondo Effect." ScienceDaily. ScienceDaily, 22 September 2008. <www.sciencedaily.com/releases/2008/09/080922090807.htm>.
University College London. (2008, September 22). Unlocking The Secret Of The Kondo Effect. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2008/09/080922090807.htm
University College London. "Unlocking The Secret Of The Kondo Effect." ScienceDaily. www.sciencedaily.com/releases/2008/09/080922090807.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Dutch Architects Show Off 3D House-Building Prowess

Dutch Architects Show Off 3D House-Building Prowess

Reuters - Innovations Video Online (Mar. 31, 2015) Dutch architects are constructing a 3D-printed canal-side home, which they hope will spark an environmental revolution in the house-building industry. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Stops in China

Solar Plane Stops in China

Reuters - News Video Online (Mar. 31, 2015) Solar Impulse 2 stops over in China&apos;s Chonqing, completing the fifth leg in its bid to become the first solar powered plane to travel around the globe. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Solar Impulse Lands in China After 20-Hour Flight from Myanmar

Solar Impulse Lands in China After 20-Hour Flight from Myanmar

AFP (Mar. 31, 2015) Solar Impulse 2 lands in China, the world&apos;s biggest carbon emitter, completing the fifth leg of its landmark global circumnavigation powered solely by the sun. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins