Featured Research

from universities, journals, and other organizations

Source Of Multipotent Stem Cells With Broad Regenerative Potential identified

Date:
September 24, 2008
Source:
Children's Hospital of Pittsburgh
Summary:
In a promising finding for the field of regenerative medicine, stem cell researchers have identified a source of adult stem cells found on the walls of blood vessels with the unlimited potential to differentiate into human tissues such as bone, cartilage and muscle.

In a promising finding for the field of regenerative medicine, stem cell researchers at Children's Hospital of Pittsburgh of UPMC have identified a source of adult stem cells found on the walls of blood vessels with the unlimited potential to differentiate into human tissues such as bone, cartilage and muscle.

Related Articles


The scientists, led by Bruno Péault, PhD, deputy director of the Stem Cell Research Center at Children's Hospital, identified cells known as pericytes that are multipotent, meaning they have broad developmental potential. Pericytes are found on the walls of small blood vessels such as capillaries and microvessels throughout the body and have the potential to be extracted and grown into many types of tissues, according to the study.

"This finding marks the first direct evidence of the source of multipotent adult stem cells known as mesenchymal stem cells. We believe pericytes represent one of the most promising sources of multipotent stem cells that scientists have been searching for in the quest to make regenerative medicine possible," Dr. Péault said. "The encouraging aspect of this source is that blood vessels are the one structure that all tissues in the human body have in common. These cells can be extracted easily and painlessly from convenient sources such as fat tissue, dental pulp, umbilical cord and placental tissue, then grown in culture to large numbers and, possibly, re-injected into the patient to heal a broken bone, a failing joint or an injured muscle."

In their laboratory in the John G. Rangos Sr. Research Center, researchers were able to identify pericytes in all human tissues they analyzed, including muscle, fat, pancreas, placenta and many other samples. Through purification in the lab, these pericytes could then be coaxed into becoming whatever type of tissue the scientists desired. For instance, the researchers took pericytes from the pancreas and then reinjected them into an injured muscle. The cells immediately began regenerating muscle tissue.

Results of the study are published in the September issue of the journal Cell Stem Cell.


Story Source:

The above story is based on materials provided by Children's Hospital of Pittsburgh. Note: Materials may be edited for content and length.


Cite This Page:

Children's Hospital of Pittsburgh. "Source Of Multipotent Stem Cells With Broad Regenerative Potential identified." ScienceDaily. ScienceDaily, 24 September 2008. <www.sciencedaily.com/releases/2008/09/080922122429.htm>.
Children's Hospital of Pittsburgh. (2008, September 24). Source Of Multipotent Stem Cells With Broad Regenerative Potential identified. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2008/09/080922122429.htm
Children's Hospital of Pittsburgh. "Source Of Multipotent Stem Cells With Broad Regenerative Potential identified." ScienceDaily. www.sciencedaily.com/releases/2008/09/080922122429.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) — Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) — According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins