Featured Research

from universities, journals, and other organizations

Inhibiting Cholesterol-associated Protein Reduces High-risk Blockages In Arteries

Date:
September 28, 2008
Source:
University of Pennsylvania School of Medicine
Summary:
Using the drug darapladib, researchers have inhibited a cholesterol-and immune system-associated protein, thereby reducing the development of heart-disease plaques that may cause death, heart attacks, and strokes in a pig model of atherosclerosis and diabetes.

Plaques due to atherosclerosis in darapladib-treated vessels (bottom) are less severe and complex as compared to non-darapladib-treated control groups (top).
Credit: Robert L. Wilensky, MD, University of Pennsylvania School of Medicine; Nature Medicine

Using the drug darapladib, researchers at the University of Pennsylvania School of Medicine and colleagues have inhibited a cholesterol-and immune system-associated protein, thereby reducing the development of heart-disease plaques that may cause death, heart attacks, and strokes in a pig model of atherosclerosis and diabetes.

Related Articles


The study recently appeared online in Nature Medicine.

“We’ve used a model that closely mimics clinical disease,” says first author Robert L. Wilensky, MD, Director of Experimental Interventional Cardiology and Professor of Medicine at the Penn Cardiovascular Institute. “The study shows that darapladib is useful in reducing atherosclerosis but more importantly those blockages that are thought to cause death and heart attacks.”

Atherosclerosis, or hardening of the arteries, is the most common cause of heart attack, stroke, and death from cardiovascular disease, and has long been thought of as a type of chronic inflammation. An early first step in the build-up of the plaques associated with atherosclerosis is the accumulation of low-density lipoproteins (LDLs), the “bad” cholesterol, on artery walls. When LDLs are oxidized by the body, they attract immune cells and lipids to the site of the build-up.

Problems arise when the plaques grow to form a lesion characterized by a thin fibrous cap and a lipid-filled core of dying cells. These unstable plaques are prone to rupture, which can then lead to heart attack, stroke, and death.

A molecule called lipoprotein-associated phospholipase A2 (Lp-PLA2) is connected with LDLs circulating in the blood. Elevated levels of Lp-PLA2 in the blood predict an increased risk of heart disease events and are related to the development of the necrotic core of plaques. Darapladib specifically inhibits Lp-PLA2.

“The results are exciting,” says Wilensky. “First, darapladib reduced the overall amount and size of plaques that block the coronary arteries of animals in the study. More importantly, it reduced the number and size of the type of advanced plaques that cause heart attacks and strokes. “

These advanced plaques have a thin cap and large core filled with cellular debris from inflammatory-immune cells that engorge themselves on cholesterol. If unstable plaques come into contact with blood, blood clots that develop from this contact constrict flow, which can lead to stroke and heart attack. Darapladib stabilizes these dangerous plaques by decreasing the size of the core and reducing the number of inflammatory-immune cells present within the plaque. Darapladib also decreased the expression of genes involved in enlisting immune cells involved in the inflammatory response associated with atherosclerosis.

“The aha moment came when we saw the profound difference in plaque composition in animals given medication versus those not given darapladib, although the high cholesterol levels in the pig model remained the same in both groups,” says Wilensky. “This study took cholesterol out of the equation and let us evaluate the effects of inflammation on the development of atherosclerosis.”

Recently, darapladib has been tested in a human clinical trial in Europe, which showed similar findings. GlaxoSmithKline (GSK) Inc., who provided the darapladib for the study, is planning a Phase 1 safety and efficacy trial with darapladib in humans in the near future. Penn will be one site in this proposed multi-center clinical trial.

This study was supported, in part, by funding from GlaxoSmithKline, over the last two years totaling about $1.5 million, through an industry-academic alliance called the Alternative Drug Discovery Initiative at the Penn School of Medicine. Co-author Emile Mohler, III, has a position on a steering committee as a National Coordinator for the Phase III GSK trial for darapladib.

In addition to other Penn co-authors Damir Hamamdzic, Daniel J. Pelchovitz, and Jisheng Yang, colleagues from Thomas Jefferson University, GlaxSmithKline, Southhampton General Hospital (UK), and the University of Washington were also co-authors. Wilensky has a consulting agreement ($2000 over the past year) with GSK for another compound.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Inhibiting Cholesterol-associated Protein Reduces High-risk Blockages In Arteries." ScienceDaily. ScienceDaily, 28 September 2008. <www.sciencedaily.com/releases/2008/09/080922122538.htm>.
University of Pennsylvania School of Medicine. (2008, September 28). Inhibiting Cholesterol-associated Protein Reduces High-risk Blockages In Arteries. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2008/09/080922122538.htm
University of Pennsylvania School of Medicine. "Inhibiting Cholesterol-associated Protein Reduces High-risk Blockages In Arteries." ScienceDaily. www.sciencedaily.com/releases/2008/09/080922122538.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins