Featured Research

from universities, journals, and other organizations

Electron Give-and-take Lets Molecules Shine Individually On Camera

Date:
October 2, 2008
Source:
DOE/Pacific Northwest National Laboratory
Summary:
A single fluorescent molecule flashing as it gains or loses its electron has made the microscopic spotlight. Watching a whole gaggle of these molecules, they appear to work synchronously; but a new close-up view reveals mavericks that shine when they seemingly shouldn't. The work sets the stage for a better understanding of the underlying principles of certain reactions common to biofuel production, so-called electron transfer reactions.

Microscopic Spotlight: A combination of well-known techniques allows researchers to control and visualize fluorescent molecules one at a time. Single molecules vary in how much energy they give off.
Credit: Image courtesy of DOE/Pacific Northwest National Laboratory

A single fluorescent molecule flashing as it gains or loses its electron has made the microscopic spotlight. Watching a whole gaggle of these molecules, they appear to work synchronously; but a new close-up view reveals mavericks that shine when they seemingly shouldn't. The work sets the stage for a better understanding of the underlying principles of certain reactions common to biofuel production.

Related Articles


Scientists at the Department of Energy's Pacific Northwest National Laboratory zoomed in on single molecules acting as supermodels for a kind of chemical reaction in which electrons get handed off to other players. A combination of two techniques allowed the researchers to load or empty fluorescent dye with electrons, then watch for individual flashes of light as molecules gained and lost their parcels. The researchers hope this method will let them better understand so-called electron transfer reactions.

Electron transfer reactions are central to processes that capture the sun's energy via photosynthesis or that allow cells to generate the energy needed to sustain life. Engineers and chemists studying renewable energy want to reverse-engineer photosynthesis and similar processes to create hydrogen and other biofuels. These reactions rely on electrons jumping from one molecule to another: passing the electrons along releases their chemical energy so it can be applied to something practical, such as making sugar in plants.

"If we could understand these electron transfer reactions better," said PNNL project lead Eric Ackerman, "then we could better design the proteins that generate energy."

The Little Picture

When studying these reactions, chemists generally look at a whole group of molecules reacting and measure the average energy they give off, much like looking at a whole organization of workers and averaging their productivity. More useful is knowing which of your coworkers are workaholics and which are asleep on the job, and, hopefully, why.

The team combined two well-established techniques to zoom in on electron transfer reactions. In one, called cyclic voltammetry, a molecule fluoresces when zapped with electricity. The PNNL team chose a dye called cresyl violet: at a particular voltage, the dye molecule loses an electron and in the process sends out a flash of white light.

But traditional cyclic voltammetry allows studying such molecules only in big batches. Being able to watch individual molecular reactions would be like being able to see the details in the frames of a film.

To view single molecules, PNNL chemists Chenghong Lei and Dehong Hu combined forces. Lei built an electrochemical cylinder about the size of a brazil nut that held a drop of dye. The team fitted this onto Hu's single-molecule fluorescent microscope at EMSL, DOE's Environmental Molecular Sciences Laboratory on the PNNL campus. This set-up resulted in a new instrument capable of performing both techniques simultaneously.

By rapidly cycling the voltage up and down, the team found that some individual molecules were a bit erratic. Although most of the molecules behaved as expected, some that should have been lit, weren't. And turning off the electricity, all should have blinked out but some kept burning in the absence of a voltage.

"What we want to know is what causes these variations. And can we control these variations in a favorable way with external experimental and environmental conditions?" said Lei.

Better Than Mother Nature

Studying molecules one at a time can provide insights into chemical reactions that can't be observed by studying them en masse. Such insights could help chemists improve upon the design that nature gave them. Their new instrument provides a way to study and control the molecules.

"If we could make a desired molecule consistently work at its maximum rate, that would be a big improvement," said Ackerman.

In addition, the researchers said they plan to use cresyl violet or another fluorescent molecule side-by-side, or even incorporated into proteins of interest, such as those involved in electron transfer reactions that generate biofuels. As the proteins gain or lose electrons, the fluorescent components would lose or gain theirs to reveal what is going on . . . in a flash.

This work was supported by the Department of Energy's Basic Energy Sciences, part of the Office of Science.


Story Source:

The above story is based on materials provided by DOE/Pacific Northwest National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lei et al. Single-molecule fluorescence spectroelectrochemistry of cresyl violet. Chemical Communications, September 19, 2008; DOI: 10.1039/b812161c

Cite This Page:

DOE/Pacific Northwest National Laboratory. "Electron Give-and-take Lets Molecules Shine Individually On Camera." ScienceDaily. ScienceDaily, 2 October 2008. <www.sciencedaily.com/releases/2008/09/080925094759.htm>.
DOE/Pacific Northwest National Laboratory. (2008, October 2). Electron Give-and-take Lets Molecules Shine Individually On Camera. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2008/09/080925094759.htm
DOE/Pacific Northwest National Laboratory. "Electron Give-and-take Lets Molecules Shine Individually On Camera." ScienceDaily. www.sciencedaily.com/releases/2008/09/080925094759.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins