Featured Research

from universities, journals, and other organizations

Nanoparticles Used To Deliver Treatment For Brain, Spinal Cord Injuries

Date:
October 2, 2008
Source:
Purdue University
Summary:
Researchers have developed a method of using nanoparticles to deliver treatments to injured brain and spinal cord cells. Scientists coated silica nanoparticles with a polymer to target and repair injured guinea pig spinal cords. They then used the coated nanoparticles to deliver both the polymer and hydralazine to cells with secondary damage from a naturally produced toxin.

Purdue University researchers have developed a method of using nanoparticles to deliver treatments to injured brain and spinal cord cells.

A team led by Richard Borgens of the School of Veterinary Medicine's Center for Paralysis Research and Welden School of Biomedical Engineering coated silica nanoparticles with a polymer to target and repair injured guinea pig spinal cords. That research is being published in the October edition of the journal Small.

The team then used the coated nanoparticles to deliver both the polymer and hydralazine to cells with secondary damage from a naturally produced toxin. That research was published in August by the journal Nanomedicine.

Borgens' group had previously shown benefits of the polymer polyethylene glycol, or PEG, to treat rats with brain injuries and dogs with spinal cord injuries. PEG specifically targets damaged cells and seals the injured area, reducing further damage. It also helps restore cell function, Borgens said.

In previous studies, PEG was mixed with saline and injected.

"Composition and concentration limited how much PEG we could get to the injury," he said.

"If you change the composition to make the PEG more potent, it produces ethylene glycol, the poison in antifreeze. If you change the concentration of PEG in another way, the solution becomes syrupy and difficult to inject."

So the team - which includes Youngnam Cho of the Center for Paralysis Research, Riyi Shi of the center and Weldon School, and Albena Ivanisevic of Weldon School and the Department of Chemistry - turned to silica nanoparticles.

"These particles are so tiny they can't be seen with a regular microscope. They are about the size of a large virus. So you can inject as many as you need. And they are safe inside bodies," Borgens said.

In the first study, the researchers coated the nanoparticles with PEG to treat guinea pig spinal cord injuries. The treated spinal cord cells showed improved physiological functioning.

In the second study, the researchers added both PEG and hydralazine, an antihypertension drug, to mesoporous silica nanoparticles. These nanoparticles have pores that can hold the drug, which is later delivered to the damaged cells. The hydralazine was added to fight off secondary damage to cells that occurs after the initial injury.

"When cells are injured, they produce natural toxins," Borgens said. "Acrolein is the most poisonous of these toxins. It's an industrial hazard for which hydralazine is an antidote."

Borgens and his team introduced acrolein into cells and then treated the cells with different combinations of hydralazine and/or PEG delivered by the mesoporous silica nanoparticles.

They found that the treatment restored disrupted cell function caused by acrolein.

The team concluded that the use of nanoparticles to deliver both PEG and hydralazine increased the effectiveness of earlier PEG-only treatment by controlling and concentrating release of the drug and the polymer, producing a dual treatment and prolonging the treatment's duration.

The goal of Borgens' research is to improve the quality of life of those who have suffered head or spinal cord injuries.

"All ambulances should have PEG on board," he said. "It can probably save thousands of people from more severe head and spinal damage."

Financial support for the studies came from the state of Indiana and an endowment from Mari Hulman George.

The researchers now are testing the PEG/hydralazine treatment on rats with brain injuries. By the end of the year, they hope to test the treatment on naturally injured paraplegic dogs.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Nanoparticles Used To Deliver Treatment For Brain, Spinal Cord Injuries." ScienceDaily. ScienceDaily, 2 October 2008. <www.sciencedaily.com/releases/2008/10/081001145120.htm>.
Purdue University. (2008, October 2). Nanoparticles Used To Deliver Treatment For Brain, Spinal Cord Injuries. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2008/10/081001145120.htm
Purdue University. "Nanoparticles Used To Deliver Treatment For Brain, Spinal Cord Injuries." ScienceDaily. www.sciencedaily.com/releases/2008/10/081001145120.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Ebola Patient Told Hospital He Was from Liberia

Ebola Patient Told Hospital He Was from Liberia

AP (Oct. 1, 2014) The first Ebola patient diagnosed in the U.S. initially went to a Dallas emergency room last week but was sent home, despite telling a nurse that he had been in disease-ravaged West Africa, the hospital acknowledged Wednesday. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins