Featured Research

from universities, journals, and other organizations

Learning How Not To Be Afraid

Date:
October 9, 2008
Source:
Howard Hughes Medical Institute
Summary:
Scientists are showing how the brain changes when mice learn to feel safe and secure in situations that would normally make them anxious. The mice developed a conditioned inhibition of fear that squelches anxiety as effectively as antidepressant drugs, such as Prozac.

Why do some people have the ability to remain calm and relaxed even in the most stressful situations? New experiments in mice by Howard Hughes Medical Institute (HHMI) researchers are providing insight into how the brain changes when the animals learn to feel safe and secure in situations that would normally make them anxious.

Related Articles


HHMI investigator Eric R. Kandel and Daniela D. Pollak conducted experiments in which they conditioned mice to feel safe in stressful situations. Their experiments showed that the mice developed a conditioned inhibition of fear, which Kandel calls "learned safety."

The behavioral changes observed in the mice squelched anxiety as effectively as antidepressant drugs such as Prozac, said Kandel, who is at Columbia University. "It's a little bit like psychotherapy," he noted. "This shows that behavioral intervention works."

The research is reported on October 8, 2008, in the journal Neuron. Kandel conducted the study with Pollak, who will soon leave Kandel's lab to assume a position at the Medical University of Vienna.

The new study is noteworthy because it reveals in elegant detail how behavioral conditioning can affect the brain. According to Kandel, knowing how behavioral intervention works at the molecular and cellular levels may prove to be an interesting route to identifying novel drugs to treat depression and anxiety disorders.

Kandel, who trained as a psychiatrist, is intrigued by the new discoveries. "I've always been interested in how psychoanalysis works," he said. "Since it is a learning experience, there must be a biological basis in the brain."

Two types of fear, instinctive and learned, have deep evolutionary roots and are essential for survival. But in some people, pathological forms of learned fear can lead to debilitating anxiety disorders, post-traumatic stress syndrome, or depression. Learned safety, on the other hand, reduces chronic stress, one of the hallmarks of depression and other psychopathologies. "The ability to identify, develop, and exploit conditions of safety and security is central to survival and mental health," said Kandel, "but little is known of the neurobiology of these processes."

In previous research, Kandel's group taught mice to associate a specific audible tone with protection from an impending averse event. Over time, the mice became conditioned to take advantage of sources of safety and security in their environments. In the new Neuron study, Pollak and Kandel sought to tease out the behavioral and molecular characteristics of learned safety in mice.

In their experiments, mice were trained to associate safety or fear with specific auditory stimuli (tones). For fear conditioning, the auditory stimulus was paired with a mild shock to the mouse's foot. For safety conditioning, the auditory stimulus was not followed by a shock. The experiments showed that the safety-conditioned mice learned to associate the tone with the absence of danger and displayed less anxiety in the presence of this safety signal.

Moving to a stress test, Kandel's team placed the safety-conditioned mice into a pool of water for a swim test. The forced-swim test is commonly used by researchers to measure how antidepressant drugs affect the behavior of mice. "In this seemingly desperate situation – where the mice have no option to escape from the water -- they start to show signs of behavioral despair that are ameliorated by antidepressant medications. We found that the mice trained for safety could overcome their sense of hopelessness in the swim test," Kandel explained. The antidepressant effect in the safety-conditioned mice was similar and comparable in magnitude to treatment with the drug fluoxetine (Prozac), Kandel noted.

Pollak and Kandel then looked at how learned safety influenced the development of newborn cells in the dentate gyrus, a structure located in a region of the brain called the hippocampus. The dentate gyrus is notable because it is one of the few structures in the brain that spawns new neurons – even in adult animals.

The researchers found that mice that had been conditioned for safety had a greater number of newborn cells in the dentate gyrus. When Kandel's team used radiation to blunt the birth of new cells in the dentate gyrus, they discovered that their interventions both slowed safety learning and stunted the antidepressant effects of learned safety.

Pollak and Kandel also found that safety learning ramped up expression of brain-derived neurotrophic factor or BDNF in the dentate gyrus. BDNF is a growth factor that promotes the growth and differentiation of new neurons and their connections.

Intriguingly, genetic analyses revealed that in the amygdala, the brain's fear center, learned safety tunes the expression of key components of the dopamine neurotransmitter system and the neuropeptide system. Both systems are thought to influence learning, mood, and cognition.

Kandel said his group was intrigued to find that learned safety did not influence serotonin, the neurotransmitter typically targeted by antidepressant drugs. Learned safety appears to influence levels of both dopamine and neuropeptide neurotransmitters, suggesting new avenues for antidepressant drug development, he said.

"This has given us several interesting insights and led us to a number of potential targets for new drugs," Kandel explained, noting there are already agents in development that influence the dopamine and neuropeptide pathways.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Learning How Not To Be Afraid." ScienceDaily. ScienceDaily, 9 October 2008. <www.sciencedaily.com/releases/2008/10/081008150445.htm>.
Howard Hughes Medical Institute. (2008, October 9). Learning How Not To Be Afraid. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2008/10/081008150445.htm
Howard Hughes Medical Institute. "Learning How Not To Be Afraid." ScienceDaily. www.sciencedaily.com/releases/2008/10/081008150445.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins