Featured Research

from universities, journals, and other organizations

Metallic Silane As A Pathway To High-temperature Superconductivity In Hydrogen

Date:
October 14, 2008
Source:
Uppsala Universitet
Summary:
Researchers have used theoretical calculations to understand a high-pressure structural phase transition in silane which could gives rise to metallization and could even result in superconductivity.

An international research team led by Professor Rajeev Ahuja, Uppsala University, has used theoretical calculations to understand a high-pressure structural phase transition in silane which could gives rise to metallization and could even result in superconductivity.

The findings are published this week in the online edition of the Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Hydrogen is the the one of most abundant and lightest element in the universe, and it has been speculated already fifty years back that metallization in pure hydrogen could lead to room- temperature superconductivity, which has been an open question till now. But enormous pressure would be required to compress hydrogen sufficiently in order to achieve this metallic state. One way to overcome this problem is to take advantage of so-called “chemical pressure”, generated by introducing other elements, such as silicon, to exert additional pressure by “sandwiching” the hydrogen layers, producing a hydrogen-rich material known as silane.

Earlier this year, experimentalists at the Geophysical Laboratory of the Carnegie Institution of Washington have reported on the metallization of silane under pressure, but it remained unclear in what crystal structure silane existed in these experiments.

This prompted the team led by Professor Rajeev Ahuja to carry out a systematic computercomputational experiments based on state-of-the-art first-principles methods to determine the structure for metallic silane, and they succeeded in identifying one crystal structure from a pool of plausible candidates that matches all requirements. The findings are in excellent agreement with experiment and allowed even for the prediction that the metallic phase of silane could exist at lower pressures. The extensive simulations were performed at Uppsala University’s Multidisciplinary Center for Advanced Computational Science (UPPMAX).

"Metallization of silane represents an extraordinarily important discovery”, says Professor Rajeev Ahuja. “Our results can be seen to represent an important advancement in the theoretical search for metallic and even superconducting hydrogen within a tractable pressure regime."


Story Source:

The above story is based on materials provided by Uppsala Universitet. Note: Materials may be edited for content and length.


Cite This Page:

Uppsala Universitet. "Metallic Silane As A Pathway To High-temperature Superconductivity In Hydrogen." ScienceDaily. ScienceDaily, 14 October 2008. <www.sciencedaily.com/releases/2008/10/081014092838.htm>.
Uppsala Universitet. (2008, October 14). Metallic Silane As A Pathway To High-temperature Superconductivity In Hydrogen. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2008/10/081014092838.htm
Uppsala Universitet. "Metallic Silane As A Pathway To High-temperature Superconductivity In Hydrogen." ScienceDaily. www.sciencedaily.com/releases/2008/10/081014092838.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) — A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins