Featured Research

from universities, journals, and other organizations

How To 'Stamp' Nanodevices With Rubber Molds

Date:
October 27, 2008
Source:
Cornell University
Summary:
By manipulating the way tiny droplets of fluid dry, researchers have created an innovative way to make and pattern nanoscale wires and other devices that ordinarily can be made only with expensive lithographic tools. The process is guided by molds that "stamp" the desired structures.

How droplets shrink in a mold. The thickness of the gap between a mold and the surface below determines how a drop of fluid will dry. A thin gap, left, lets the droplet pull away from the edges and shrink into a nanoscale structure. A thick gap, right, pulls the droplet toward the edges to form a "corral." Although the mold is a few microns across, the result is measured in nanometers, in a process developed by Cornell professor Dan Luo and colleagues.
Credit: Luo Molecular Bioengineering Lab

By manipulating the way tiny droplets of fluid dry, Cornell researchers have created an innovative way to make and pattern nanoscale wires and other devices that ordinarily can be made only with expensive lithographic tools. The process is guided by molds that "stamp" the desired structures.

Related Articles


"You can in principle build almost any types of architectures you want at nanoscale," reported Dan Luo, Cornell associate professor of biological and environmental engineering, postdoctoral researcher Wenlong Cheng and colleagues. Their work is described in the online edition of the journal Nature Nanotechnology and in the October 2008 print issue.

To demonstrate the process, the researchers assembled gold nanoparticles into nanoscale wires, disks, squares, triangles and "corrals" (spaces enclosed by nanowires), and demonstrated that their nanowires could be connected to microfabricated electrodes, and through them to other circuitry. In addition to metal nanoparticles, the process could be applied to quantum dots, magnetic spheres and other nanoparticles, they said. They also assembled arrays of single salt crystals, suggesting that any material capable of crystallization could be manipulated by the process.

They began with gold nanoparticles about 12 nanometers in diameter suspended in water. To suspend metal particles in water, the researchers coated them with a "ligand" that adheres to the metal and to water. A second innovation in the Cornell process is to use single chains of synthetic DNA as the ligand. The DNA molecules extend out from the particles like hairs and, as the water evaporates, entangle the particles with one another.

Adjusting the DNA lengths can precisely control the distance between the particles to make them assemble into orderly arrays called superlattices, rather than clumping together at random. Metal superlattices have applications in computer memory and photonics and have unique properties in electronic circuits.

The next step is to press down a silicone rubber mold onto a thin layer of the solution on a silicon substrate. Microscopic holes and channels in the underside of the mold effectively "stamp" the desired shapes on the fluid. As they dry, droplets shrink to create wires and other shapes measured in nanometers from a mold measured in microns. This means, the researchers say, that nanoscale superlattice features -- currently possible only with expensive, specialized equipment -- can be made in an inexpensive way.

The research was funded by the National Science Foundation under a CAREER award to Luo, and by the New York State Foundation for Science, Technology and Innovation.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "How To 'Stamp' Nanodevices With Rubber Molds." ScienceDaily. ScienceDaily, 27 October 2008. <www.sciencedaily.com/releases/2008/10/081022135624.htm>.
Cornell University. (2008, October 27). How To 'Stamp' Nanodevices With Rubber Molds. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2008/10/081022135624.htm
Cornell University. "How To 'Stamp' Nanodevices With Rubber Molds." ScienceDaily. www.sciencedaily.com/releases/2008/10/081022135624.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russian Pilot Recalls Successful Balloon Flight

Russian Pilot Recalls Successful Balloon Flight

AP (Feb. 1, 2015) American Troy Bradley and Russian Leonid Tiukhtyaev landed a helium-filled balloon four miles offshore in Baja California Sur. (Feb. 1) Video provided by AP
Powered by NewsLook.com
Smart Glasses Augment Reality to Help Visually Impaired

Smart Glasses Augment Reality to Help Visually Impaired

Reuters - Innovations Video Online (Feb. 1, 2015) New augmented reality smart glasses developed by researchers at Oxford University can help people with visual impairments improve their vision by providing depth-based feedback, allowing users to "see" better. Joel Flynn reports. Video provided by Reuters
Powered by NewsLook.com
Madrid’s LED Bulbs Are Street Lights That Save

Madrid’s LED Bulbs Are Street Lights That Save

Reuters - Innovations Video Online (Feb. 1, 2015) Madrid swaps its street light system with LED technology in the largest urban street lighting replacement plan in the world. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins