Featured Research

from universities, journals, and other organizations

Multiple Sclerosis Research Charges Ahead With New Mouse Model Of Disease

Date:
November 10, 2008
Source:
The Company of Biologists
Summary:
A new study highlights the role of a charge-switching enzyme in nervous system deficits characteristic of multiple sclerosis and other related neurological illness. Too much of a charge-switching enzyme causes symptoms of multiple sclerosis and related disorders in mouse models.

A new study highlights the role of a charge-switching enzyme in nervous system deficits characteristic of multiple sclerosis and other related neurological illness.

Related Articles


Multiple sclerosis (MS) is one of several diseases in which myelin – the insulator for electrical signaling in the nervous system – breaks down and causes severe deficits in brain and nerve function. Much like the rubber insulation on an electrical cord, myelin surrounds long projections from the body of a neuron, and allows signals to travel down the cell with speed and efficiency. Patients with MS and other "de-myelinating" diseases therefore suffer deficits in balance, coordination, and movement, as well as sensory disturbances, from the loss of this neuronal insulation.

A major research initiative in treating these diseases is identifying the molecular factors and changes that lead to myelin breakdown. In a new study published in Disease Models & Mechanisms (DMM), dmm.biologists.org, a team of Canadian researchers report on a new mouse model of disease which will help in understanding how demyelination occurs. Previous research had identified that an enzyme known as peptidylarginine deiminase 2, or PAD2, is increased in patients with MS, and that PAD2 switches a charge on a protein key to myelin stability. Therefore, Abdiwahab A. Musse and colleagues at the University of Guelph and the Hospital for Sick Children in Ontario created a genetically modified mouse expressing too much of an enzyme known as PAD2. They found that these mice had significant loss of myelin, and also have behavioral deficits, such as abnormal movement, balance, and coordination.

Not only does this work present a new mouse model to study demyleinating disease, but it also stresses the importance of PAD in maintaining myelin integrity. Their work highlights PAD as a potential therapeutic target, as well as a potential marker for early detection of MS and other diseases characterized by a loss of myelin.

The report was written by Abdiwahab A. Musse, Dorothee Bienzle, Roberto Poma, and George Harauz at the University of Guelph in Guelph, Ontario, and Zhen Li, Cameron A. Ackerley, Helena Lei, Mario A. Moscarello and Fabrizio G. Mastronardi at the Hospital for Sick Children in Toronto, Ontario. The report is published in the November/December issue of a new research journal, Disease Models & Mechanisms (DMM), published by The Company of Biologists, a non-profit based in Cambridge, UK.


Story Source:

The above story is based on materials provided by The Company of Biologists. Note: Materials may be edited for content and length.


Cite This Page:

The Company of Biologists. "Multiple Sclerosis Research Charges Ahead With New Mouse Model Of Disease." ScienceDaily. ScienceDaily, 10 November 2008. <www.sciencedaily.com/releases/2008/11/081106064350.htm>.
The Company of Biologists. (2008, November 10). Multiple Sclerosis Research Charges Ahead With New Mouse Model Of Disease. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2008/11/081106064350.htm
The Company of Biologists. "Multiple Sclerosis Research Charges Ahead With New Mouse Model Of Disease." ScienceDaily. www.sciencedaily.com/releases/2008/11/081106064350.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) — Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins