Featured Research

from universities, journals, and other organizations

Cancer Drugs May Build And Not Tear Down Blood Vessels

Date:
November 11, 2008
Source:
University of California - San Diego
Summary:
Scientists have thought that one way to foil a tumor from generating blood vessels to feed its growth -- a process called angiogenesis -- was by creating drugs aimed at stopping a key vessel growth-promoting protein. But now the opposite seems to be true.

Scientists have thought that one way to foil a tumor from generating blood vessels to feed its growth – a process called angiogenesis – was by creating drugs aimed at stopping a key vessel growth-promoting protein. But now the opposite seems to be true.

Researchers at the Moores Cancer Center at the University of California, San Diego (UCSD) in La Jolla have found evidence that blocking that protein target, called VEGF, or vascular endothelial growth factor, doesn't really halt the process at all. Instead, cutting levels of VEGF in a tumor actually props up existing blood vessels, making them stronger and more normal, and in some cases the tumors larger. But as a result, the tumor is more vulnerable to the effects of chemotherapy drugs.

In a paper appearing online November 9, 2008 in the journal Nature, David Cheresh, Ph.D., professor and vice chair of pathology at the UC San Diego School of Medicine and the Moores UCSD Cancer Center and his co-workers mimicked the action of anti-angiogenesis drugs by genetically reducing VEGF levels in mouse tumors and inflammatory cells in various cancers, including pancreatic cancer. They also used drugs to inhibit VEGF receptor activity. In every case, blood vessels were made normal again.

The researchers say the findings provide an explanation for recent evidence showing that anti-angiogenesis drugs such as Avastin can be much more effective when combined with chemotherapy. The results may lead to better treatment strategies for a variety of cancers.

"We've discovered that when anti-angiogenesis drugs are used to lower the level of VEGF within a tumor, it's not so much a reduction in the endothelial cells and losing blood vessels as it is an activation of the tumor blood vessels supporting cells," said Cheresh. "This enables vessels to mature, providing a conduit for better drug delivery to the tumor. While the tumors initially get larger, they are significantly more sensitive to chemotherapeutic drugs."

As a result, Cheresh said, the findings may provide a new strategy for treating cancer. "It means that chemotherapy could be timed appropriately. We could first stabilize the blood vessels, and then come in with chemotherapy drugs that are able to treat the cancer."

Co-author Randall Johnson, Ph.D., professor of biology at UCSD, Cheresh and their colleagues showed in a related paper in the same journal that tumors were more susceptible to drugs after inflammatory cells lost the ability to express VEGF.

"These two papers define a new mechanism of action for VEGF and for anti-angiogenesis drugs," Cheresh said. "It appears that the drugs, in shutting down VEGF activity, are actively maturing blood vessels, causing them to become stable and more normal, as opposed to reducing blood vessels."

VEGF normally promotes the growth of endothelial cells, which in turn helps build new blood vessels in tumors. But tumor blood vessels are built poorly and do a terrible job of carrying blood and oxygen – and drugs. Cutting VEGF levels in the tumor in turn increases the activity of cells called pericytes that surround the blood vessels, stabilizing them and making them more susceptible to chemotherapy, Cheresh explained.

Cheresh's group found that receptors for VEGF and another growth-promoting protein, PDGF, form a complex that turns off PDGF and the activity of the blood vessel-support cells. Tumors make too much VEGF in their haste to form blood vessels, which turns on the receptor complex. "When you take away the VEGF, you 'take the foot off of the brake,'" he said, allowing the pericytes to go to work, maturing blood vessels. The same mechanism is at work during wound repair.

Cheresh said that the results show that the host response to the cancer – whether or not it is making blood vessel-maturing cells, for example – is critical in terms of susceptibility to therapy. "It's not just about the therapy, but also what the host does in response to the cancer that makes a difference whether a tumor lives or dies, and if it's susceptible to a drug or not. We can change the host response to the cancer, which is otherwise resistant, and make the vessels more mature, temporarily increasing blood flow to the cancer. We're sensitizing the cancer."

The type of solid tumor should not matter, since the mechanism isn't specific to a particular kind of tumor, he noted. That the quality of the tumor's blood vessels could dictate the patient's response to chemotherapy could be one reason that two patients with similar cancers respond differently to the same therapy.

Cheresh believes that some drug regimens may need to be reexamined. "We have to test available regimens and perhaps restructure the way that we give drugs," he said. "We may be giving the right drugs, but we may not be giving them in the right order. We're just beginning to understand how it works."

Co-authors include Joshua I. Greenberg, M.D., David J. Shields, Ph.D., Samuel G. Barillas, Lisette M. Acevedo, Ph.D., Eric Murphy, Ph.D., Jianhua Huang, M.D., Lea Scheppke, Christian Stockmann, Ph.D., and Niren Angle, M.D.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Cancer Drugs May Build And Not Tear Down Blood Vessels." ScienceDaily. ScienceDaily, 11 November 2008. <www.sciencedaily.com/releases/2008/11/081109193433.htm>.
University of California - San Diego. (2008, November 11). Cancer Drugs May Build And Not Tear Down Blood Vessels. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2008/11/081109193433.htm
University of California - San Diego. "Cancer Drugs May Build And Not Tear Down Blood Vessels." ScienceDaily. www.sciencedaily.com/releases/2008/11/081109193433.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins