Featured Research

from universities, journals, and other organizations

Nanotechnology: Quantum Computer May Be Closer With Extended Quantum Lifetime Of Electrons

Date:
November 17, 2008
Source:
University College London - UCL
Summary:
Physicists have found a way to extend the quantum lifetime of electrons by more than 5,000 per cent. Electrons exhibit a property called 'spin' and work like tiny magnets which can point up, down or a quantum superposition of both. The state of the spin can be used to store information and so by extending their life the research provides a significant step towards building a usable quantum computer.

Microwaves are used to control the spin state of electrons held in silicon. This spin state can be watched in real time by measuring the electric current flowing between the (grey) electrodes.
Credit: Image courtesy UCL

Physicists in the USA and at the London Centre for Nanotechnology have found a way to extend the quantum lifetime of electrons by more than 5,000 per cent, as reported recently in Physical Review Letters. Electrons exhibit a property called ‘spin’ and work like tiny magnets which can point up, down or a quantum superposition of both.

The state of the spin can be used to store information and so by extending their life the research provides a significant step towards building a usable quantum computer.

“Silicon has dominated the computing industry for decades,” says Dr Gavin Morley, lead author of the paper. “The most sensitive way to see the quantum behaviour of electrons held in silicon chips uses electrical currents. Unfortunately, the problem has always been that these currents damage the quantum features under study, degrading their usefulness.”

Marshall Stoneham, Professor of Physics at UCL (University College London), commented: “Getting the answer from a quantum computation isn't easy. This new work takes us closer to solving the problem by showing how we might read out the state of electron spins in a silicon-based quantum computer.”

To achieve the record quantum lifetime the team used a magnetic field twenty-five times stronger than those used in previous experiments. This powerful field also provided an additional advantage in the quest for practical quantum computing: it put the electron spins into a convenient starting state by aligning them all in one direction.

For more information, see the paper published in Physical Review Letters, November 14 2008, by G. W. Morley (London Center for Nanotechnology), D. R. McCamey (University of Utah), H. A. Seipel (University of Utah), L.-C. Brunel (National High Magnetic field Laboratory), J. van Tol (National High Magnetic field Laboratory) and C. Boehme (University of Utah).


Story Source:

The above story is based on materials provided by University College London - UCL. Note: Materials may be edited for content and length.


Cite This Page:

University College London - UCL. "Nanotechnology: Quantum Computer May Be Closer With Extended Quantum Lifetime Of Electrons." ScienceDaily. ScienceDaily, 17 November 2008. <www.sciencedaily.com/releases/2008/11/081114081220.htm>.
University College London - UCL. (2008, November 17). Nanotechnology: Quantum Computer May Be Closer With Extended Quantum Lifetime Of Electrons. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2008/11/081114081220.htm
University College London - UCL. "Nanotechnology: Quantum Computer May Be Closer With Extended Quantum Lifetime Of Electrons." ScienceDaily. www.sciencedaily.com/releases/2008/11/081114081220.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins