Featured Research

from universities, journals, and other organizations

Highly Efficient Lithium Batteries Could Greatly Extend Battery Life Of Laptop Computers

Date:
November 29, 2008
Source:
Wiley-Blackwell
Summary:
Scientists have developed a new material for anodes, which could clear a path for a new generation of rechargeable batteries. Their new material involves three-dimensional, highly porous silicon structures.

Anodes made of highly porous silicon have a high charge capacity for lithium ions.
Credit: Copyright Wiley-VCH

Rechargeable lithium ion batteries provide portable devices that require a lot of energy, such as mobile telephones, digital cameras, and notebook computers, with power. However, their capacity, and thus the running time of the devices, remain somewhat limited. A notebook computer thus usually runs only about two hours.

The reason for this is the relatively small capacity of the graphite anode in these batteries to absorb lithium ions. A team led by Jaephil Cho at Hanyang University in Korea has now developed a new material for anodes, which could clear a path for a new generation of rechargeable batteries. As reported in the journal Angewandte Chemie, their new material involves three-dimensional, highly porous silicon structures.

Lithium ion accumulator batteries produce current by moving lithium ions. The battery usually contains a cathode (positive electrode) made of a mixed metal oxide, such as lithium cobalt oxide, and an anode (negative electrode) made of graphite. While the battery is being charged, lithium ions migrate into the anode, where they are stored between the graphite layers. When the battery is being discharged, these ions migrate back to the cathode.

It would be nice to have an anodic material that could store more lithium ions than graphite. Silicon presents an interesting alternative. The problem: silicon expands a great deal while absorbing lithium ions (charging) and shrinks when giving them up (discharging). After several cycles the required thin silicon layers are pulverized and can no longer be charged.

Cho’s team has now developed a new method for the production of a porous silicon anode that can withstand this strain. They annealed silicon dioxide nanoparticles with silicon particles whose outermost silicon atoms have short hydrocarbon chains attached to them at 900 C under an argon atmosphere. The silicon dioxide particles were removed from the resulting mass by etching. What remained were carbon-coated silicon crystals in a continuous, three-dimensional, highly porous structure.

Anodes made of this highly porous silicon have a high charge capacity for lithium ions. In addition, the lithium ions are rapidly transported and stored, making rapid charging and discharging possible. A high specific capacity is also attained with high current. The changes in volume that occur upon charging and discharging cause only a small degree of swelling and shrinking of the pore walls, which have a thickness of less than 70 nm.

In addition, the first charging cycle results in an amorphous (noncrystalline) silicon mass around residual nanocrystals in the pore walls. Consequently, even after 100 cycles, the stress in the pore wall is not noticeable in the material.


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries. Angewandte Chemie International Edition, DOI: 10.1002/anie.200804355

Cite This Page:

Wiley-Blackwell. "Highly Efficient Lithium Batteries Could Greatly Extend Battery Life Of Laptop Computers." ScienceDaily. ScienceDaily, 29 November 2008. <www.sciencedaily.com/releases/2008/11/081120103802.htm>.
Wiley-Blackwell. (2008, November 29). Highly Efficient Lithium Batteries Could Greatly Extend Battery Life Of Laptop Computers. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2008/11/081120103802.htm
Wiley-Blackwell. "Highly Efficient Lithium Batteries Could Greatly Extend Battery Life Of Laptop Computers." ScienceDaily. www.sciencedaily.com/releases/2008/11/081120103802.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins