Featured Research

from universities, journals, and other organizations

Antisocial, Invasive Cells Are Basis Of Cancer, Finding Suggests

Date:
December 14, 2008
Source:
BBSRC
Summary:
Scientists have discovered the mechanism by which cells normally repel each other -- a process sidestepped by cancer cells which go on to invade and conquer healthy regions of the body.

Photomicrograph of cervical cancer cells in tissue culture. New research finds that cancer cells sidestep the mechanism by which cells normally repel each other.
Credit: iStockphoto/Torsten Wittmann

Scientists at UCL funded by BBSRC and the Medical Research Council have discovered the mechanism by which cells normally repel each other – a process sidestepped by cancer cells which go on to invade and conquer healthy regions of the body.

The findings suggest an alternative way in which cancer treatments might work in the future, if therapies can be targeted at the process of ‘cell repulsion’ to stop cancer cells from spreading and causing secondary tumours.

Cells typically produce localized protrusions which help them navigate their environment. When two cells meet, they normally retract their protrusions and change their direction of movement, effectively ‘repelling’ one another. This phenomenon, called contact inhibition of locomotion, was first discovered 50 years ago in a UCL laboratory experiment, and its failure was thought to contribute to the malignant invasion of cancer. But it took up to now to witness the process in action and pin down the mechanism.

The latest UCL study led by Dr Roberto Mayor, UCL Cell and Developmental Biology, has captured the phenomenon ‘in vivo’ – in living tissue – and has identified the mechanism by which it works, suggesting possible new targets for future cancer therapies.

Dr Roberto Mayor says: "Contact inhibition of locomotion was first discovered by UCL Professor Michael Abercrombie more than 50 years ago, when he saw fibroblast cells under the microscope confront each other, retract their protrusions and change direction on contact. The failure of cells to repulse each other in this way was thought to play a role in the spread of cancer."

"However, until now the molecular basis of this process and whether it also occurred within the body was unknown. Our study of neural crest cells shows that these cells behave in exactly this way. When two migrating neural crest cells meet, they stop, collapse their protrusions and change direction. However, when a neural crest cell meets another cell type, it fails to behave as expected and instead invades the other tissue, in the same manner as metastatic cancer cells which migrate and go on to cause secondary tumours."

"Inhibition of a type of cell signalling - non-canonical Wnt signalling – is behind this behaviour, cancelling the normal repulsion you would expect between cells. Our discovery offers possible new targets for the future treatment of tumour metastasis – the spreading of cancer cells, one of the mostly deadly aspects of cancer."


Story Source:

The above story is based on materials provided by BBSRC. Note: Materials may be edited for content and length.


Journal Reference:

  1. Carmona-Fontaine et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature, 2008; DOI: 10.1038/nature07441

Cite This Page:

BBSRC. "Antisocial, Invasive Cells Are Basis Of Cancer, Finding Suggests." ScienceDaily. ScienceDaily, 14 December 2008. <www.sciencedaily.com/releases/2008/12/081212222722.htm>.
BBSRC. (2008, December 14). Antisocial, Invasive Cells Are Basis Of Cancer, Finding Suggests. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2008/12/081212222722.htm
BBSRC. "Antisocial, Invasive Cells Are Basis Of Cancer, Finding Suggests." ScienceDaily. www.sciencedaily.com/releases/2008/12/081212222722.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins