Featured Research

from universities, journals, and other organizations

Modified Gene Targets Cancer Cells One Thousand Times More Often Than Healthy Cells

Date:
December 21, 2008
Source:
University of Rochester
Summary:
Researchers have designed a gene that produces a thousand times more protein in cancer cells than in healthy cells. The findings may help address the prime challenge in anticancer therapy, improving treatments' ability to specifically and effectively target cancer cells. Using this new approach, scientists should be able to insert "self-destruct" codes into the modified gene, forcing cancer cells to kill themselves while healthy cells remain largely unaffected.

Researchers at the University of Rochester have designed a gene that produces a thousand times more protein in cancer cells than in healthy cells.

Related Articles


The findings may help address the prime challenge in anti-cancer therapy: improving treatments' ability to specifically and effectively target cancer cells. Using this new approach, scientists should be able to insert "self-destruct" codes into the modified gene, forcing cancer cells to kill themselves while healthy cells remain largely unaffected.

Though trials will be necessary to determine if the difference is enough to destroy tumors without harming healthy tissue, the initial findings, published in today's early edition of Proceedings of the National Academy of Sciences, are promising, say the authors.

Vera Gorbunova, assistant professor of biology at the University of Rochester, and her team, Andrei Seluanov, assistant professor of biology, and graduate student Christopher Hine, were investigating Rad51, a protein that is expressed at about five times higher level in cancer cells than in healthy cells, when they stumbled on something very unexpected.

"We stripped off some of the Rad51 gene and replaced it with a marker protein DNA to see why Rad51 was five times more abundant in cancer cells," says Gorbunova. "We wanted to see if there was any way we could boost that difference and create a really useful cancer-targeting tool. We couldn't believe it when we saw the cancer cells expressing the engineered Rad51 around a thousand times more."

When Gorbunova first saw the huge discrepancy, she thought one of her graduate students had fumbled the lab test. Further tests showed that the altered Rad51 was expressed in some cancer cells as much as 12,500 times as often as healthy cells, says Gorbunova. Such a large discrepancy means scientists should be able to use it to create versions of Rad51 that carry a "toxic bomb," which only the cancer cells will trigger.

Rad51 is normally involved in DNA repair, which explains why it's more often expressed in cancer cells. Cancer cells reproduce at accelerated rates, often "not stopping to fix their DNA when they should," says Gorbunova. In these cancer cells, Rad51 is working overtime to repair all the damage, so it's not surprising that it is expressed more often.

Gorbunova believes that when she stripped out part of the Rad51-coding gene, she also stripped out some regulatory elements, which control the production of the protein. Without these elements, healthy cells ignore the gene and do not make the protein. However, these changes have opposite the effect on cancer cells, causing elevated, uncontrolled protein production.

Gobunova and her team have already fused a variant of diphtheria toxin into the Rad51 gene as a "toxic bomb" and tested it on a variety of cancer cell types, including breast cancer, fibrosarcoma, and cervical cancer cells. The results look very promising, she says.

"The early results show the new Rad51 killed all of the cancer cells with minimal if any effect on normal cells," says Gorbunova. "We're very excited. The results are much more striking than anything we would have guessed."

Gorbunova is now working with Stephen Dewhurst, professor of miocrobiology and immunology at the University of Rochester School of Medicine and Dentistry, to design a way to incorporate the new gene with its toxic cargo into a benign virus. If successful, the team will attempt to treat cancer in mice by injecting their tumors with a solution of the virus, and allow the virus to implant the gene into all cells. The key question is whether a dose high enough to kill the cancer cells also will be high enough to kill healthy cells in a living animal, despite the thousand-fold difference in the two cell types' levels of expression.

If the tests are successful, Gorbunova hopes the process might be someday given as a simple shot-in-the-arm, which might travel throughout the bloodstream and stop metastasis in its tracks.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University of Rochester. "Modified Gene Targets Cancer Cells One Thousand Times More Often Than Healthy Cells." ScienceDaily. ScienceDaily, 21 December 2008. <www.sciencedaily.com/releases/2008/12/081217190348.htm>.
University of Rochester. (2008, December 21). Modified Gene Targets Cancer Cells One Thousand Times More Often Than Healthy Cells. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2008/12/081217190348.htm
University of Rochester. "Modified Gene Targets Cancer Cells One Thousand Times More Often Than Healthy Cells." ScienceDaily. www.sciencedaily.com/releases/2008/12/081217190348.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins