Featured Research

from universities, journals, and other organizations

Molecule That Targets Brain Tumors Identified

Date:
December 30, 2008
Source:
University of California - Davis - Health System
Summary:
Researchers have discovered a molecule that targets glioblastoma, a highly deadly form of cancer.

UC Davis Cancer Center researchers report today the discovery of a molecule that targets glioblastoma, a highly deadly form of cancer. The finding, which is published in the January 2009 issue of the European Journal of Nuclear Medicine and Molecular Imaging, provides hope for effectively treating an incurable cancer.

Glioblastoma is the most common and aggressive type of primary brain tumor in adults. It is marked by tumors with irregular shapes and poorly defined borders that rapidly invade neighboring tissues, making them difficult to remove surgically.

"These brain tumors are currently treated with surgery to remove as much of the tumor as possible followed by radiation to kill cancer cells left behind and systemic chemotherapy to prevent spread to nearby tissues," said Kit Lam, senior author of the study and UC Davis chief of hematology and oncology. "It is unfortunate that this approach does not extend survival significantly. Most patients survive less than one year."

To find new options for treating the disease, Lam and his colleagues began searching for a molecule that could be injected into a patient's bloodstream and deliver high concentrations of medication or radionuclides directly to brain tumor cells while sparing normal tissues. Through their study, they identified a molecule — called LXY1 — that binds with high specificity to a particular cell-surface protein called alpha-3 integrin, which is overexpressed on cancer cells.

They also tested the molecule's ability to target brain cancer by implanting human glioblastoma cells both beneath the skin and in the brains of mice. The researchers injected the mice with a radiolabeled version of LXY1 and, using near-infrared fluorescence imaging, showed that the molecule did preferentially bind to human glioblastoma cells in both locations.

"This outcome gives us great hope that we will be able to deliver targeted therapies to treat glioblastoma," said Lam.

Lam is planning to continue this work by repeating the experiments with powerful cancer treatments linked to the LXY1 molecule. They will begin with iodine-131, a form of radionuclide currently used to treat some cancers, as well as a nanoparticle, or "smart bomb," that would carry cancer-fighting drugs to diseased cells.

Additional UC Davis study authors were Wenwu Xiao, Nianhuan Yao, Li Peng and Ruiwu Liu. Their research was funded by a grant from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - Davis - Health System. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Davis - Health System. "Molecule That Targets Brain Tumors Identified." ScienceDaily. ScienceDaily, 30 December 2008. <www.sciencedaily.com/releases/2008/12/081229105033.htm>.
University of California - Davis - Health System. (2008, December 30). Molecule That Targets Brain Tumors Identified. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2008/12/081229105033.htm
University of California - Davis - Health System. "Molecule That Targets Brain Tumors Identified." ScienceDaily. www.sciencedaily.com/releases/2008/12/081229105033.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins