Featured Research

from universities, journals, and other organizations

Molecule That Targets Brain Tumors Identified

Date:
December 30, 2008
Source:
University of California - Davis - Health System
Summary:
Researchers have discovered a molecule that targets glioblastoma, a highly deadly form of cancer.

UC Davis Cancer Center researchers report today the discovery of a molecule that targets glioblastoma, a highly deadly form of cancer. The finding, which is published in the January 2009 issue of the European Journal of Nuclear Medicine and Molecular Imaging, provides hope for effectively treating an incurable cancer.

Related Articles


Glioblastoma is the most common and aggressive type of primary brain tumor in adults. It is marked by tumors with irregular shapes and poorly defined borders that rapidly invade neighboring tissues, making them difficult to remove surgically.

"These brain tumors are currently treated with surgery to remove as much of the tumor as possible followed by radiation to kill cancer cells left behind and systemic chemotherapy to prevent spread to nearby tissues," said Kit Lam, senior author of the study and UC Davis chief of hematology and oncology. "It is unfortunate that this approach does not extend survival significantly. Most patients survive less than one year."

To find new options for treating the disease, Lam and his colleagues began searching for a molecule that could be injected into a patient's bloodstream and deliver high concentrations of medication or radionuclides directly to brain tumor cells while sparing normal tissues. Through their study, they identified a molecule — called LXY1 — that binds with high specificity to a particular cell-surface protein called alpha-3 integrin, which is overexpressed on cancer cells.

They also tested the molecule's ability to target brain cancer by implanting human glioblastoma cells both beneath the skin and in the brains of mice. The researchers injected the mice with a radiolabeled version of LXY1 and, using near-infrared fluorescence imaging, showed that the molecule did preferentially bind to human glioblastoma cells in both locations.

"This outcome gives us great hope that we will be able to deliver targeted therapies to treat glioblastoma," said Lam.

Lam is planning to continue this work by repeating the experiments with powerful cancer treatments linked to the LXY1 molecule. They will begin with iodine-131, a form of radionuclide currently used to treat some cancers, as well as a nanoparticle, or "smart bomb," that would carry cancer-fighting drugs to diseased cells.

Additional UC Davis study authors were Wenwu Xiao, Nianhuan Yao, Li Peng and Ruiwu Liu. Their research was funded by a grant from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - Davis - Health System. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Davis - Health System. "Molecule That Targets Brain Tumors Identified." ScienceDaily. ScienceDaily, 30 December 2008. <www.sciencedaily.com/releases/2008/12/081229105033.htm>.
University of California - Davis - Health System. (2008, December 30). Molecule That Targets Brain Tumors Identified. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2008/12/081229105033.htm
University of California - Davis - Health System. "Molecule That Targets Brain Tumors Identified." ScienceDaily. www.sciencedaily.com/releases/2008/12/081229105033.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins