Featured Research

from universities, journals, and other organizations

Scientists Pull Protein's Tail To Curtail Cancer

Date:
January 3, 2009
Source:
Johns Hopkins Medical Institutions
Summary:
When researchers look inside human cancer cells for the whereabouts of an important tumor-suppressor, they often catch the protein playing hooky, lolling around in cellular broth instead of muscling its way out to the cells' membranes and foiling cancer growth.

This is the modified PTEN. When PTEN’s tail is removed or otherwise incapacitated, it can’t bind with the body of the protein; this allows the tumor-suppressing molecule to move out to the plasma membrane where it can do the important work of tamping down cancer.
Credit: Image courtesy of Johns Hopkins Medical Institutions

When researchers look inside human cancer cells for the whereabouts of an important tumor-suppressor, they often catch the protein playing hooky, lolling around in cellular broth instead of muscling its way out to the cells’ membranes and foiling cancer growth.

This phenomenon of delinquency puzzled scientists for a long time — until a cell biologist in the Johns Hopkins University

School of Medicine felt compelled to genetically grab the protein by the tail and then watched as it got back to work at tamping down disease.

“It was curious that when we removed its tail, the protein suddenly was unhindered and moved out to the membrane and became active,” says Meghdad Rahdar, a graduate student in pharmacology.

The discovery, published Dec. 15 online at the Proceedings of the National Academy of Sciences, represents a potential new approach to cancer therapy, according to Peter Devreotes, Ph.D., professor and director of cell biology at Johns Hopkins.

“A long-term goal is to find a drug that does the equivalent of our bit of genetic engineering,” he says.

The flexible tail contains a cluster of four amino acids — the building blocks of proteins — that regulate this tumor suppressor known as PTEN. When chemically modified, these amino acids act to “glue” the tail back to the body of PTEN and prevent the attachment of PTEN to the membrane. By genetically removing PTEN’s tail, or manipulating the cluster of four amino acids so that they cannot be modified, the researchers persuaded PTEN to move to the cell membrane where it goes about its tumor-suppressing business of degrading a molecular signal called PIP3 that causes errant cell growth.

“As far as I know, I haven’t seen anyone activate a tumor suppressor, but we seem to have done it genetically,” Rahdar says.

While genetically engineering cancer cells in the human body is neither practical nor safe, manipulating such unbinding of PTEN with drugs is a viable alternative to guard against cell overgrowth, the hallmark of cancer, the Hopkins scientists say.

In many tumors, PTEN is simply not present. In others, it’s there, but a key enzyme that produces PIP3 is over-activated. The Hopkins team already has shown the first evidence that adding the modified PTEN to cells that lack PTEN not only restores normal enzyme levels but ramps up PTEN activity and quells the cell growth signal.

The research was supported by the National Institutes of Health.

In addition to Rahdar and Devreotes, authors on the paper are Takanari Inoue, Tobias Meyer, Jin Zhang and Francisca Vazquez, all of Johns Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Scientists Pull Protein's Tail To Curtail Cancer." ScienceDaily. ScienceDaily, 3 January 2009. <www.sciencedaily.com/releases/2008/12/081231005413.htm>.
Johns Hopkins Medical Institutions. (2009, January 3). Scientists Pull Protein's Tail To Curtail Cancer. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2008/12/081231005413.htm
Johns Hopkins Medical Institutions. "Scientists Pull Protein's Tail To Curtail Cancer." ScienceDaily. www.sciencedaily.com/releases/2008/12/081231005413.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins