Featured Research

from universities, journals, and other organizations

Type 1 Diabetes: Pancreatic Cell Transplants Engineered To Evade Immune Response

Date:
January 1, 2009
Source:
Albert Einstein College of Medicine
Summary:
In a finding that could significantly influence the way type 1 diabetes is treated, researchers have developed a technique for transplanting insulin-producing pancreatic cells that causes only a minimal immune response in recipients.

In a finding that could significantly influence the way type 1 diabetes is treated, researchers at Albert Einstein College of Medicine of Yeshiva University have developed a technique for transplanting insulin-producing pancreatic cells that causes only a minimal immune response in recipients.

Related Articles


At present, cell transplantation therapy is limited because transplant recipients are forced to take powerful immunosuppressant medications that have toxic side effects and raise the risk of infection. This advance in mice, described in the online version of Gene Therapy, could pave the way for routine use of cell transplants as a therapy for type 1 diabetes in humans.

Type 1 diabetes is an incurable autoimmune disease in which the immune system mistakenly destroys the body's own pancreatic beta cells. Beta cells produce insulin, which breaks down sugar, or glucose, for use by the body. Without these cells, too much glucose builds up in the blood. High blood glucose levels damage cells and can eventually lead to complications such as heart disease, kidney disease, blindness, and premature death.

Type 1 diabetes affects up to 2.4 million Americans and can develop at any age, though it typically appears during childhood or adolescence. People with type 1 diabetes must closely monitor their blood glucose levels and take daily insulin injections for life.

A promising alternative to insulin injections is cellular transplantation, in which beta cells are harvested from cadavers and injected into the bloodstream of patients with diabetes; the new cells replace the recipients' destroyed pancreatic beta cells. Although such transplants can control type 1 diabetes, recipients must take immunosuppressant medications in order to prevent rejection of these beta foreign cells. "Ultimately, even with immunosuppressive therapy, most of these individuals end up rejecting the transplanted cells," says the study's principal investigator, Harris Goldstein, M.D., professor of pediatrics and of microbiology & immunology at Einstein.

In this study, Dr. Goldstein and his colleagues devised a way to make foreign beta cells invisible to a transplant recipient's immune system, dramatically protecting them from rejection. They did so by harnessing the innate ability of adenoviruses to evade the body's immune surveillance system. (Adenoviruses infect tissues that line the respiratory tract, eyes, intestines, and urinary tract). After infecting cells, adenoviruses produce proteins that prevent the cells from signaling the immune system that they have been infected and should be destroyed. The viruses also produce proteins that can turn off a cell's built-in self-destruct mechanism, which is usually triggered when something disturbs a cell's internal functions.

The researchers began with a special line of insulin-producing beta cells, developed at Einstein, that were harvested from mice. When injected into diabetic mice, these foreign cells can restore normal glucose control, but only temporarily. The transplanted cells are soon destroyed by the mouse's immune system and glucose levels begin to rise, returning to pre-transplant disease levels.

Dr. Goldstein and his colleagues genetically engineered these beta cells to include three adenoviral genes responsible for making immunosuppressive proteins. Diabetic mice that received these engineered foreign beta cells maintained normal glucose control for up to three months. In contrast, a control group of diabetic mice that received the regular foreign beta cells exhibited normal glucose control for just a few days.

"Clearly, the three proteins were not optimal, because ultimately the cells did get rejected," says Dr. Goldstein. "We are now looking at other viral genes that also contribute to immune suppression and are trying to identify the best gene combination to use."

Dr. Goldstein views the current experiment as a proof of concept. "We were able to demonstrate that genetically engineered beta cells can be made highly resistant to rejection and can basically correct diabetes. This technique could conceivably be applied to protect any type of cellular transplant from rejection."

However, pancreatic cell transplantation could not help treat patients with type 2 diabetes. In this form of the disease, patients have fully functional beta cells but cells throughout their body become resistant to insulin.

The lead author of the paper is Tsoline Kojaoghlanian, M.D., assistant professor of pediatrics at Einstein. Other Einstein researchers involved in the study were Aviva Joseph, Antonio Follenzi, Jian Hua Zheng, Margarita Leiser, Norman Fleischer and Teresa DiLorenzo. An additional author is the late Marshall Horwitz, M.D., who conceived the strategy for the study. Dr. Horwitz was the Leo and Forchheimer professor and chair of microbiology & immunology as well as professor of pediatrics and of cell biology at Einstein.


Story Source:

The above story is based on materials provided by Albert Einstein College of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Albert Einstein College of Medicine. "Type 1 Diabetes: Pancreatic Cell Transplants Engineered To Evade Immune Response." ScienceDaily. ScienceDaily, 1 January 2009. <www.sciencedaily.com/releases/2008/12/081231114252.htm>.
Albert Einstein College of Medicine. (2009, January 1). Type 1 Diabetes: Pancreatic Cell Transplants Engineered To Evade Immune Response. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2008/12/081231114252.htm
Albert Einstein College of Medicine. "Type 1 Diabetes: Pancreatic Cell Transplants Engineered To Evade Immune Response." ScienceDaily. www.sciencedaily.com/releases/2008/12/081231114252.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins